field.py 32.8 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

Jait Dixit's avatar
Jait Dixit committed
4
5
from keepers import Versionable

6
from d2o import distributed_data_object,\
7
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
8

9
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
10

11
from nifty.field_types import FieldType
12

13
from nifty.spaces.space import Space
14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

19
from keepers import Loggable
20

csongor's avatar
csongor committed
21

Jait Dixit's avatar
Jait Dixit committed
22
class Field(Loggable, Versionable, object):
theos's avatar
theos committed
23
    # ---Initialization methods---
24

theos's avatar
theos committed
25
    def __init__(self, domain=None, val=None, dtype=None, field_type=None,
26
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
27

28
        self.domain = self._parse_domain(domain=domain, val=val)
29
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
30

31
        self.field_type = self._parse_field_type(field_type, val=val)
32

theos's avatar
theos committed
33
34
35
36
37
38
        try:
            start = len(reduce(lambda x, y: x+y, self.domain_axes))
        except TypeError:
            start = 0
        self.field_type_axes = self._get_axes_tuple(self.field_type,
                                                    start=start)
39

theos's avatar
theos committed
40
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
41
                                       val=val,
theos's avatar
theos committed
42
43
                                       domain=self.domain,
                                       field_type=self.field_type)
44

45
46
47
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
48
49
50

        self.set_val(new_val=val, copy=copy)

51
    def _parse_domain(self, domain, val=None):
52
        if domain is None:
53
54
55
56
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
57
        elif isinstance(domain, Space):
58
            domain = (domain,)
59
60
61
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
62
        for d in domain:
63
            if not isinstance(d, Space):
64
65
66
                raise TypeError(
                    "Given domain contains something that is not a "
                    "nifty.space.")
csongor's avatar
csongor committed
67
68
        return domain

69
    def _parse_field_type(self, field_type, val=None):
70
        if field_type is None:
71
72
73
74
            if isinstance(val, Field):
                field_type = val.field_type
            else:
                field_type = ()
75
        elif isinstance(field_type, FieldType):
76
            field_type = (field_type,)
77
78
        elif not isinstance(field_type, tuple):
            field_type = tuple(field_type)
79
        for ft in field_type:
80
            if not isinstance(ft, FieldType):
81
82
                raise TypeError(
                    "Given object is not a nifty.FieldType.")
83
84
        return field_type

theos's avatar
theos committed
85
86
87
88
89
90
91
92
93
94
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
95

96
    def _infer_dtype(self, dtype, val, domain, field_type):
csongor's avatar
csongor committed
97
        if dtype is None:
98
99
100
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
theos's avatar
theos committed
101
102
103
104
105
106
107
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
        if field_type is not None:
            dtype_tuple += tuple(np.dtype(ft.dtype) for ft in field_type)
csongor's avatar
csongor committed
108

theos's avatar
theos committed
109
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
110

theos's avatar
theos committed
111
        return dtype
112

113
114
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
115
            if isinstance(val, distributed_data_object):
116
                distribution_strategy = val.distribution_strategy
117
            elif isinstance(val, Field):
118
                distribution_strategy = val.distribution_strategy
119
            else:
120
                self.logger.info("Datamodel set to default!")
121
                distribution_strategy = gc['default_distribution_strategy']
122
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
123
124
125
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
126
        return distribution_strategy
127
128

    # ---Factory methods---
129

130
131
    @classmethod
    def from_random(cls, random_type, domain=None, dtype=None, field_type=None,
132
                    distribution_strategy=None, **kwargs):
133
134
        # create a initially empty field
        f = cls(domain=domain, dtype=dtype, field_type=field_type,
135
                distribution_strategy=distribution_strategy)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
171
        else:
172
173
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
174

175
        return random_arguments
csongor's avatar
csongor committed
176

177
178
179
180
181
182
183
184
185
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
        # assert that all spaces in `self.domain` are either harmonic or
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
                raise AttributeError(
186
                    "Field has a space in `domain` which is neither "
187
188
189
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
190
191
192
193
194
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
195
196
197
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
198
199

        if len(spaces) == 0:
200
201
            raise ValueError(
                "No space for analysis specified.")
202
        elif len(spaces) > 1:
203
204
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
205
206
207
208

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
209
210
            raise ValueError(
                "The analyzed space must be harmonic.")
211

212
213
214
215
216
217
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

218
219
220
221
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

222
223
224
225
226
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

227
228
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
229
                                  distribution_strategy=distribution_strategy,
230
231
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
232

233
        # extract pindex and rho from power_domain
234
235
        pindex = power_domain.pindex
        rho = power_domain.rho
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

        result_field = self.copy_empty(domain=result_domain)
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
292
            raise ValueError("pindex's distribution strategy must be "
293
294
295
296
297
298
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
299
                    "A slicing distributor shall not be reshaped to "
300
301
302
303
304
305
306
307
308
309
310
311
312
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

313
314
    def power_synthesize(self, spaces=None, real_signal=True,
                         mean=None, std=None):
315
        # assert that all spaces in `self.domain` are either of signal-type or
316
317
        # power_space instances
        for sp in self.domain:
318
            if not sp.harmonic and not isinstance(sp, PowerSpace):
319
                raise AttributeError(
320
                    "Field has a space in `domain` which is neither "
321
322
                    "harmonic nor a PowerSpace.")

323
324
325
326
327
328
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
329
330
331
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
332
333

        if len(spaces) == 0:
334
335
            raise ValueError(
                "No space for synthesis specified.")
336
        elif len(spaces) > 1:
337
338
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
339
340
341
342

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
343
344
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
345
346
347
348
349
350
351
352
353
354
355
356
357
358

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

359
360
        result_list = [self.__class__.from_random(
                             'normal',
361
362
363
                             mean=mean,
                             std=std,
                             domain=result_domain,
364
365
366
                             dtype=harmonic_domain.dtype,
                             field_type=self.field_type,
                             distribution_strategy=self.distribution_strategy)
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
                                    axes=x.domain_axes[power_space_index])[0]
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
391
            self.logger.warn(
392
                "The distribution_stragey of pindex does not fit the "
393
394
395
396
397
398
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
theos's avatar
theos committed
399
        full_spec = self.val.get_full_data()
400
401
402
403
404

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
theos's avatar
theos committed
405
        local_rescaler = full_spec[local_blow_up]
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
427

theos's avatar
theos committed
428
    # ---Properties---
429

theos's avatar
theos committed
430
    def set_val(self, new_val=None, copy=False):
431
432
        new_val = self.cast(new_val)
        if copy:
theos's avatar
theos committed
433
434
            new_val = new_val.copy()
        self._val = new_val
theos's avatar
theos committed
435
        return self
csongor's avatar
csongor committed
436

437
438
    def get_val(self, copy=False):
        if copy:
theos's avatar
theos committed
439
            return self._val.copy()
440
        else:
theos's avatar
theos committed
441
            return self._val
csongor's avatar
csongor committed
442

theos's avatar
theos committed
443
444
445
    @property
    def val(self):
        return self._val
csongor's avatar
csongor committed
446

theos's avatar
theos committed
447
448
449
    @val.setter
    def val(self, new_val):
        self._val = self.cast(new_val)
csongor's avatar
csongor committed
450

451
452
    @property
    def shape(self):
453
454
455
456
457
458
459
        shape_tuple = ()
        shape_tuple += tuple(sp.shape for sp in self.domain)
        shape_tuple += tuple(ft.shape for ft in self.field_type)
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
460

461
        return global_shape
csongor's avatar
csongor committed
462

463
464
    @property
    def dim(self):
theos's avatar
theos committed
465
466
467
468
469
470
471
        dim_tuple = ()
        dim_tuple += tuple(sp.dim for sp in self.domain)
        dim_tuple += tuple(ft.dim for ft in self.field_type)
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
472

473
474
    @property
    def dof(self):
theos's avatar
theos committed
475
476
477
478
479
480
481
482
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
483
        try:
theos's avatar
theos committed
484
            return reduce(lambda x, y: x * y, volume_tuple)
485
        except TypeError:
theos's avatar
theos committed
486
            return 0
487

theos's avatar
theos committed
488
    # ---Special unary/binary operations---
489

csongor's avatar
csongor committed
490
491
492
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
493
494
        else:
            dtype = np.dtype(dtype)
495

496
497
        casted_x = x

498
        for ind, sp in enumerate(self.domain):
499
            casted_x = sp.pre_cast(casted_x,
500
501
502
503
504
505
506
                                   axes=self.domain_axes[ind])

        for ind, ft in enumerate(self.field_type):
            casted_x = ft.pre_cast(casted_x,
                                   axes=self.field_type_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
507
508

        for ind, sp in enumerate(self.domain):
509
510
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
511
512

        for ind, ft in enumerate(self.field_type):
513
514
            casted_x = ft.post_cast(casted_x,
                                    axes=self.field_type_axes[ind])
515
516

        return casted_x
csongor's avatar
csongor committed
517

theos's avatar
theos committed
518
    def _actual_cast(self, x, dtype=None):
519
        if isinstance(x, Field):
csongor's avatar
csongor committed
520
521
522
523
524
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

525
        return_x = distributed_data_object(
526
527
528
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
529
530
        return_x.set_full_data(x, copy=False)
        return return_x
theos's avatar
theos committed
531
532

    def copy(self, domain=None, dtype=None, field_type=None,
533
             distribution_strategy=None):
theos's avatar
theos committed
534
        copied_val = self.get_val(copy=True)
535
536
537
538
539
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                field_type=field_type,
                                distribution_strategy=distribution_strategy)
theos's avatar
theos committed
540
541
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
542

theos's avatar
theos committed
543
    def copy_empty(self, domain=None, dtype=None, field_type=None,
544
                   distribution_strategy=None):
theos's avatar
theos committed
545
546
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
547
        else:
theos's avatar
theos committed
548
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
549

theos's avatar
theos committed
550
551
552
553
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
554

theos's avatar
theos committed
555
556
557
558
        if field_type is None:
            field_type = self.field_type
        else:
            field_type = self._parse_field_type(field_type)
csongor's avatar
csongor committed
559

560
561
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
562

theos's avatar
theos committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
            for i in xrange(len(self.field_type)):
                if self.field_type[i] is not field_type[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
577
                distribution_strategy == self.distribution_strategy):
theos's avatar
theos committed
578
579
580
581
582
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
                              field_type=field_type,
583
                              distribution_strategy=distribution_strategy)
theos's avatar
theos committed
584
        return new_field
csongor's avatar
csongor committed
585

theos's avatar
theos committed
586
587
588
589
590
591
592
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
593
            if key != '_val':
theos's avatar
theos committed
594
595
596
597
598
599
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
600
        if inplace:
csongor's avatar
csongor committed
601
602
603
604
            new_field = self
        else:
            new_field = self.copy_empty()

605
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
606

csongor's avatar
csongor committed
607
        if spaces is None:
theos's avatar
theos committed
608
609
610
            spaces = range(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
611

612
        for ind, sp in enumerate(self.domain):
theos's avatar
theos committed
613
614
615
616
617
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
618
619

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
620
621
        return new_field

theos's avatar
theos committed
622
623
624
625
626
627
628
629
630
    def dot(self, x=None, bare=False):
        if isinstance(x, Field):
            try:
                assert len(x.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert x.domain[index] == self.domain[index]
                for index in xrange(len(self.field_type)):
                    assert x.field_type[index] == self.field_type[index]
            except AssertionError:
631
632
                raise ValueError(
                    "domains are incompatible.")
theos's avatar
theos committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
            # extract the data from x and try to dot with this
            x = x.get_val(copy=False)

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

        y = y.get_val(copy=False)

        # Cast the input in order to cure dtype and shape differences
        x = self.cast(x)

        dotted = x.conjugate() * y

        return dotted.sum()

651
    def norm(self, q=2):
csongor's avatar
csongor committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
666
        if q == 2:
667
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
668
        else:
669
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

686
        new_val = self.get_val(copy=False)
theos's avatar
theos committed
687
        new_val = new_val.conjugate()
688
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
689
690
691

        return work_field

theos's avatar
theos committed
692
    # ---General unary/contraction methods---
693

theos's avatar
theos committed
694
695
    def __pos__(self):
        return self.copy()
696

theos's avatar
theos committed
697
698
699
700
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
701
702
        return return_field

theos's avatar
theos committed
703
704
705
706
707
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
708

theos's avatar
theos committed
709
710
711
712
713
714
    def _contraction_helper(self, op, spaces, types):
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
715

theos's avatar
theos committed
716
717
718
719
        if types is None:
            types = xrange(len(self.field_type))
        else:
            types = utilities.cast_axis_to_tuple(types, len(self.field_type))
720

theos's avatar
theos committed
721
722
723
724
        axes_list = ()
        axes_list += tuple(self.domain_axes[sp_index] for sp_index in spaces)
        axes_list += tuple(self.field_type_axes[ft_index] for
                           ft_index in types)
725
        try:
theos's avatar
theos committed
726
            axes_list = reduce(lambda x, y: x+y, axes_list)
727
        except TypeError:
theos's avatar
theos committed
728
            axes_list = ()
csongor's avatar
csongor committed
729

theos's avatar
theos committed
730
731
732
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
733

theos's avatar
theos committed
734
735
736
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
737
        else:
theos's avatar
theos committed
738
739
740
741
742
743
744
745
746
747
748
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
            return_field_type = tuple(self.field_type[i]
                                      for i in xrange(len(self.field_type))
                                      if i not in types)
            return_field = Field(domain=return_domain,
                                 val=data,
                                 field_type=return_field_type,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
749

theos's avatar
theos committed
750
751
    def sum(self, spaces=None, types=None):
        return self._contraction_helper('sum', spaces, types)
csongor's avatar
csongor committed
752

theos's avatar
theos committed
753
754
    def prod(self, spaces=None, types=None):
        return self._contraction_helper('prod', spaces, types)
csongor's avatar
csongor committed
755

theos's avatar
theos committed
756
757
    def all(self, spaces=None, types=None):
        return self._contraction_helper('all', spaces, types)
csongor's avatar
csongor committed
758

theos's avatar
theos committed
759
760
    def any(self, spaces=None, types=None):
        return self._contraction_helper('any', spaces, types)
csongor's avatar
csongor committed
761

theos's avatar
theos committed
762
763
    def min(self, spaces=None, types=None):
        return self._contraction_helper('min', spaces, types)
csongor's avatar
csongor committed
764

theos's avatar
theos committed
765
766
    def nanmin(self, spaces=None, types=None):
        return self._contraction_helper('nanmin', spaces, types)
csongor's avatar
csongor committed
767

theos's avatar
theos committed
768
769
    def max(self, spaces=None, types=None):
        return self._contraction_helper('max', spaces, types)
csongor's avatar
csongor committed
770

theos's avatar
theos committed
771
772
    def nanmax(self, spaces=None, types=None):
        return self._contraction_helper('nanmax', spaces, types)
csongor's avatar
csongor committed
773

theos's avatar
theos committed
774
775
    def mean(self, spaces=None, types=None):
        return self._contraction_helper('mean', spaces, types)
csongor's avatar
csongor committed
776

theos's avatar
theos committed
777
778
    def var(self, spaces=None, types=None):
        return self._contraction_helper('var', spaces, types)
csongor's avatar
csongor committed
779

theos's avatar
theos committed
780
781
    def std(self, spaces=None, types=None):
        return self._contraction_helper('std', spaces, types)
csongor's avatar
csongor committed
782

theos's avatar
theos committed
783
    # ---General binary methods---
csongor's avatar
csongor committed
784

theos's avatar
theos committed
785
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
786
        # if other is a field, make sure that the domains match
787
        if isinstance(other, Field):
theos's avatar
theos committed
788
789
790
791
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
792
                assert len(other.field_type) == len(self.field_type)
theos's avatar
theos committed
793
794
795
                for index in xrange(len(self.field_type)):
                    assert other.field_type[index] == self.field_type[index]
            except AssertionError:
796
797
                raise ValueError(
                    "domains are incompatible.")
theos's avatar
theos committed
798
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
799

theos's avatar
theos committed
800
801
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
802
803
804
805
806
807

        if inplace:
            working_field = self
        else:
            working_field = self.copy_empty()

theos's avatar
theos committed
808
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
809
810
811
        return working_field

    def __add__(self, other):
theos's avatar
theos committed
812
        return self._binary_helper(other, op='__add__')
813

814
    def __radd__(self, other):
theos's avatar
theos committed
815
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
816
817

    def __iadd__(self, other):
theos's avatar
theos committed
818
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
819
820

    def __sub__(self, other):
theos's avatar
theos committed
821
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
822
823

    def __rsub__(self, other):
theos's avatar
theos committed
824
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
825
826

    def __isub__(self, other):
theos's avatar
theos committed
827
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
828
829

    def __mul__(self, other):
theos's avatar
theos committed
830
        return self._binary_helper(other, op='__mul__')
831

832
    def __rmul__(self, other):
theos's avatar
theos committed
833
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
834
835

    def __imul__(self, other):
theos's avatar
theos committed
836
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
837
838

    def __div__(self, other):
theos's avatar
theos committed
839
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
840
841

    def __rdiv__(self, other):
theos's avatar
theos committed
842
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
843
844

    def __idiv__(self, other):
theos's avatar
theos committed
845
        return self._binary_helper(other, op='__idiv__', inplace=True)
846

csongor's avatar
csongor committed
847
    def __pow__(self, other):
theos's avatar
theos committed
848
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
849
850

    def __rpow__(self, other):
theos's avatar
theos committed
851
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
852
853

    def __ipow__(self, other):
theos's avatar
theos committed
854
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
855
856

    def __lt__(self, other):
theos's avatar
theos committed
857
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
858
859

    def __le__(self, other):
theos's avatar
theos committed
860
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
861
862
863
864
865

    def __ne__(self, other):
        if other is None:
            return True
        else:
theos's avatar
theos committed
866
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
867
868
869
870
871

    def __eq__(self, other):
        if other is None:
            return False
        else:
theos's avatar
theos committed
872
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
873
874

    def __ge__(self, other):
theos's avatar
theos committed
875
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
876
877

    def __gt__(self, other):
theos's avatar
theos committed
878
879
880
881
882
883
884
885
886
887
888
889
890
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
891

Jait Dixit's avatar
Jait Dixit committed
892
893
894
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
895
896
897
898
899
900
901
        # metadata
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['field_type_axes'] = str(self.field_type_axes)
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
        hdf5_group.attrs['num_domain'] = len(self.domain)
        hdf5_group.attrs['num_ft'] = len(self.field_type)
Jait Dixit's avatar
Jait Dixit committed
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

        ret_dict = {
            'val' : self.val
        }

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        for i in range(len(self.field_type)):
            ret_dict['ft_' + str(i)] = self.field_type[i]

        return ret_dict


    @classmethod
    def _from_hdf5(cls, hdf5_group, loopback_get):
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
924
        for i in range(hdf5_group.attrs['num_domain']):
Jait Dixit's avatar
Jait Dixit committed
925
926
927
928
            temp_domain.append(loopback_get('s_' + str(i)))
        new_field.domain = tuple(temp_domain)

        temp_ft = []
929
        for i in range(hdf5_group.attrs['num_ft']):
Jait Dixit's avatar
Jait Dixit committed
930
931
932
            temp_domain.append(loopback_get('ft_' + str(i)))
        new_field.field_type = tuple(temp_ft)

933
934
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
        exec('new_field.field_type_axes = ' + hdf5_group.attrs['field_type_axes'])
Jait Dixit's avatar
Jait Dixit committed
935
        new_field._val = loopback_get('val')
936
937
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy = hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
938
939

        return new_field
940

941
class EmptyField(Field):
csongor's avatar
csongor committed
942
943
    def __init__(self):
        pass