nifty_core.py 54.3 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2013 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143
144

"""
from __future__ import division
import numpy as np
Marco Selig's avatar
Marco Selig committed
145
import pylab as pl
146

147
148
149
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES

150
from nifty_paradict import space_paradict,\
151
    point_space_paradict
Ultimanet's avatar
Ultimanet committed
152

csongor's avatar
csongor committed
153
from nifty.config import about
154

Ultimanet's avatar
Ultimanet committed
155
from nifty_random import random
Marco Selig's avatar
Marco Selig committed
156

157
POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Marco Selig's avatar
Marco Selig committed
158

Ultimanet's avatar
Ultimanet committed
159
160

class space(object):
Marco Selig's avatar
Marco Selig committed
161
    """
Ultimanet's avatar
Ultimanet committed
162
163
164
165
166
167
168
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.
Marco Selig's avatar
Marco Selig committed
169

Ultimanet's avatar
Ultimanet committed
170
171
172
        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.
Marco Selig's avatar
Marco Selig committed
173
174
175

        Parameters
        ----------
176
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
177
178
            Data type of the field values for a field defined on this space
            (default: numpy.float64).
179
        datamodel :
Marco Selig's avatar
Marco Selig committed
180
181
182

        See Also
        --------
Ultimanet's avatar
Ultimanet committed
183
184
185
186
187
188
189
190
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.
Marco Selig's avatar
Marco Selig committed
191

Ultimanet's avatar
Ultimanet committed
192
193
194
195
196
197
198
199
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
200
201
202

        Attributes
        ----------
Ultimanet's avatar
Ultimanet committed
203
        para : {single object, list of objects}
204
205
206
            This is a freeform list of parameters that derivatives of the space
            class can use.
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
207
208
209
210
211
212
213
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
Marco Selig's avatar
Marco Selig committed
214
    """
215

Ultima's avatar
Ultima committed
216
    def __init__(self):
Marco Selig's avatar
Marco Selig committed
217
        """
Ultimanet's avatar
Ultimanet committed
218
            Sets the attributes for a space class instance.
Marco Selig's avatar
Marco Selig committed
219
220
221

            Parameters
            ----------
222
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
223
224
                Data type of the field values for a field defined on this space
                (default: numpy.float64).
225
            datamodel :
Marco Selig's avatar
Marco Selig committed
226

Ultimanet's avatar
Ultimanet committed
227
228
229
            Returns
            -------
            None
Marco Selig's avatar
Marco Selig committed
230
        """
231
        self.paradict = space_paradict()
232

Ultimanet's avatar
Ultimanet committed
233
234
235
    @property
    def para(self):
        return self.paradict['default']
236

Ultimanet's avatar
Ultimanet committed
237
238
239
    @para.setter
    def para(self, x):
        self.paradict['default'] = x
Marco Selig's avatar
Marco Selig committed
240

Ultima's avatar
Ultima committed
241
242
243
    def __hash__(self):
        return hash(())

244
    def _identifier(self):
Marco Selig's avatar
Marco Selig committed
245
        """
246
247
248
        _identiftier returns an object which contains all information needed
        to uniquely idetnify a space. It returns a (immutable) tuple which
        therefore can be compared.
249
        """
250
251
252
253
254
255
256
257
258
259
260
261
        return tuple(sorted(vars(self).items()))

    def __eq__(self, x):
        if isinstance(x, type(self)):
            return self._identifier() == x._identifier()
        else:
            return False

    def __ne__(self, x):
        return not self.__eq__(x)

    def __len__(self):
ultimanet's avatar
ultimanet committed
262
        return int(self.get_dim())
Marco Selig's avatar
Marco Selig committed
263

264
    def copy(self):
265
        return space(para=self.para,
266
                     dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
267

Ultimanet's avatar
Ultimanet committed
268
    def getitem(self, data, key):
269
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
270
            "ERROR: no generic instance method 'getitem'."))
Marco Selig's avatar
Marco Selig committed
271

csongor's avatar
csongor committed
272
    def setitem(self, data, update, key):
273
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
274
            "ERROR: no generic instance method 'getitem'."))
275

Ultimanet's avatar
Ultimanet committed
276
    def apply_scalar_function(self, x, function, inplace=False):
277
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
278
            "ERROR: no generic instance method 'apply_scalar_function'."))
Marco Selig's avatar
Marco Selig committed
279

Ultimanet's avatar
Ultimanet committed
280
    def unary_operation(self, x, op=None):
281
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
282
            "ERROR: no generic instance method 'unary_operation'."))
283

Ultimanet's avatar
Ultimanet committed
284
    def binary_operation(self, x, y, op=None):
285
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
286
            "ERROR: no generic instance method 'binary_operation'."))
Marco Selig's avatar
Marco Selig committed
287

288
    def get_shape(self):
289
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
290
            "ERROR: no generic instance method 'shape'."))
Marco Selig's avatar
Marco Selig committed
291

ultimanet's avatar
ultimanet committed
292
    def get_dim(self):
Marco Selig's avatar
Marco Selig committed
293
        """
Ultimanet's avatar
Ultimanet committed
294
            Computes the dimension of the space, i.e.\  the number of pixels.
Marco Selig's avatar
Marco Selig committed
295
296
297

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
298
299
300
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).
Marco Selig's avatar
Marco Selig committed
301

Ultimanet's avatar
Ultimanet committed
302
303
304
305
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
Marco Selig's avatar
Marco Selig committed
306
        """
307
        raise NotImplementedError(about._errors.cstring(
308
            "ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
309

310
    def get_dof(self):
Marco Selig's avatar
Marco Selig committed
311
        """
Ultimanet's avatar
Ultimanet committed
312
            Computes the number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
313
314
315

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
316
317
            dof : int
                Number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
318
        """
319
        raise NotImplementedError(about._errors.cstring(
320
            "ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
321

csongor's avatar
csongor committed
322
323
    def _complement_cast(self, x, axis=None):
        return x
Marco Selig's avatar
Marco Selig committed
324

325
    # TODO: Move enforce power into power_indices class
326
    def enforce_power(self, spec, **kwargs):
Marco Selig's avatar
Marco Selig committed
327
        """
Ultimanet's avatar
Ultimanet committed
328
            Provides a valid power spectrum array from a given object.
Marco Selig's avatar
Marco Selig committed
329
330
331

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
332
333
334
335
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.
Marco Selig's avatar
Marco Selig committed
336
337
338

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
339
340
341
342
343
344
345
346
347
348
349
350
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
351
352
                Flag specifying if the spectral binning is performed on
                logarithmic
Ultimanet's avatar
Ultimanet committed
353
354
355
356
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
357
358
                Number of used spectral bins; if given `log` is set to
                ``False``;
Ultimanet's avatar
Ultimanet committed
359
360
361
362
363
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
364
365
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
366
367
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
368
369

        """
370
        raise NotImplementedError(about._errors.cstring(
371
            "ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
372

373
    def check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
374
        """
375
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
376
377
378

            Parameters
            ----------
379
380
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
381
382
383

            Returns
            -------
384
385
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
386
        """
Ultima's avatar
Ultima committed
387
388
389
390
391
        if codomain is None:
            return False
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: no generic instance method 'check_codomain'."))
Marco Selig's avatar
Marco Selig committed
392

393
    def get_codomain(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
394
        """
395
396
397
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.
Marco Selig's avatar
Marco Selig committed
398
399
400

            Parameters
            ----------
401
402
403
404
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
Ultimanet's avatar
Ultimanet committed
405
                (default: None).
406
407
408
409
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).
Marco Selig's avatar
Marco Selig committed
410
411
412

            Returns
            -------
413
414
            codomain : nifty.space
                A compatible codomain.
Ultimanet's avatar
Ultimanet committed
415
        """
416
        raise NotImplementedError(about._errors.cstring(
417
            "ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
418

419
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
420
        """
Ultimanet's avatar
Ultimanet committed
421
422
            Generates random field values according to the specifications given
            by the parameters.
Marco Selig's avatar
Marco Selig committed
423

Ultimanet's avatar
Ultimanet committed
424
425
426
427
428
429
430
            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
Marco Selig's avatar
Marco Selig committed
431
            random : string, *optional*
Ultimanet's avatar
Ultimanet committed
432
433
434
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
435
436

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
437
438
                - "gau" (normal distribution with zero-mean and a given
                    standard deviation or variance)
Marco Selig's avatar
Marco Selig committed
439
440
441
442
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
Ultimanet's avatar
Ultimanet committed
443
444
445
446
447
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
448
449
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                    *optional*
Ultimanet's avatar
Ultimanet committed
450
                Power spectrum (default: 1).
451
452
453
454
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
455
                Scale of each band (default: None).
456
            codomain : nifty.space, *optional*
Ultimanet's avatar
Ultimanet committed
457
                A compatible codomain with power indices (default: None).
458
            log : bool, *optional*
459
460
                Flag specifying if the spectral binning is performed on
                logarithmic
461
462
463
464
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
465
466
                Number of used spectral bins; if given `log` is set to
                ``False``;
467
468
469
470
471
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
472
473
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
474
475
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Ultimanet's avatar
Ultimanet committed
476
477
478
479
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
Marco Selig's avatar
Marco Selig committed
480
        """
481
482
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_random_values'."))
Marco Selig's avatar
Marco Selig committed
483

484
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
485
        """
486
487
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
488
489
490

            Parameters
            ----------
491
492
493
494
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
495
496
497

            Returns
            -------
498
499
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
500
        """
501
        raise NotImplementedError(about._errors.cstring(
502
            "ERROR: no generic instance method 'calc_weight'."))
Marco Selig's avatar
Marco Selig committed
503

504
505
506
    def get_weight(self, power=1):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_weight'."))
Marco Selig's avatar
Marco Selig committed
507

Ultima's avatar
Ultima committed
508
509
510
511
    def calc_norm(self, x, q):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'norm'."))

512
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
513
        """
514
515
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
516
517
518

            Parameters
            ----------
519
520
521
522
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array
Marco Selig's avatar
Marco Selig committed
523
524
525

            Returns
            -------
526
527
            dot : scalar
                Inner product of the two arrays.
Ultimanet's avatar
Ultimanet committed
528
        """
529
        raise NotImplementedError(about._errors.cstring(
530
            "ERROR: no generic instance method 'dot'."))
Marco Selig's avatar
Marco Selig committed
531

532
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
533
        """
534
            Computes the transform of a given array of field values.
Marco Selig's avatar
Marco Selig committed
535

Ultimanet's avatar
Ultimanet committed
536
537
            Parameters
            ----------
538
539
540
541
542
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
                codomain space to which the transformation shall map
                (default: self).
Marco Selig's avatar
Marco Selig committed
543
544
545

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
546
547
            Tx : numpy.ndarray
                Transformed array
548

Ultimanet's avatar
Ultimanet committed
549
550
551
552
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
553
        """
554
555
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_transform'."))
Marco Selig's avatar
Marco Selig committed
556

557
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
558
        """
Ultimanet's avatar
Ultimanet committed
559
560
            Smoothes an array of field values by convolution with a Gaussian
            kernel.
Marco Selig's avatar
Marco Selig committed
561
562
563

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
564
565
566
567
568
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).
Marco Selig's avatar
Marco Selig committed
569
570
571

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
572
573
            Gx : numpy.ndarray
                Smoothed array.
Marco Selig's avatar
Marco Selig committed
574

Ultimanet's avatar
Ultimanet committed
575
576
577
578
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
579
        """
580
581
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
582

583
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
584
        """
Ultimanet's avatar
Ultimanet committed
585
            Computes the power of an array of field values.
Marco Selig's avatar
Marco Selig committed
586
587
588

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
589
590
591
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.
Marco Selig's avatar
Marco Selig committed
592
593
594
595

            Returns
            -------
            spec : numpy.ndarray
Ultimanet's avatar
Ultimanet committed
596
                Power contained in the input array.
Marco Selig's avatar
Marco Selig committed
597
598
599

            Other parameters
            ----------------
Ultimanet's avatar
Ultimanet committed
600
601
602
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
603
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
604
605
606
607
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
608
609
610
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
611
612
                Flag specifying if the spectral binning is performed on
                logarithmic
613
614
615
616
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
617
618
                Number of used spectral bins; if given `log` is set to
                ``False``;
619
620
621
622
623
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
624
625
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
626
627
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
628

Marco Selig's avatar
Marco Selig committed
629
        """
630
631
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
632

633
634
635
636
637
638
639
    def calc_real_Q(self, x):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_real_Q'."))

    def calc_bincount(self, x, weights=None, minlength=None):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_bincount'."))
Marco Selig's avatar
Marco Selig committed
640

641
    def get_plot(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
642
        """
Ultimanet's avatar
Ultimanet committed
643
644
            Creates a plot of field values according to the specifications
            given by the parameters.
645
646
647

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
693
694
                Flag specifying if the spectral binning is performed on
                logarithmic
695
696
697
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
Ultimanet's avatar
Ultimanet committed
698
            nbin : integer, *optional*
699
700
                Number of used spectral bins; if given `log` is set to
                ``False``;
701
                integers below the minimum of 3 induce an automatic setting;
702
                by default no binning is done (default: None).
Ultimanet's avatar
Ultimanet committed
703
            binbounds : {list, array}, *optional*
704
705
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
706
707
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
708
709
710
711
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
712
713

        """
714
715
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
716

Ultimanet's avatar
Ultimanet committed
717
    def __repr__(self):
Ultima's avatar
Ultima committed
718
719
720
721
        string = ""
        string += str(type(self)) + "\n"
        string += "paradict: " + str(self.paradict) + "\n"
        return string
Marco Selig's avatar
Marco Selig committed
722

Ultimanet's avatar
Ultimanet committed
723
    def __str__(self):
Ultima's avatar
Ultima committed
724
        return self.__repr__()
Marco Selig's avatar
Marco Selig committed
725
726


Ultimanet's avatar
Ultimanet committed
727
class point_space(space):
Marco Selig's avatar
Marco Selig committed
728
    """
Ultimanet's avatar
Ultimanet committed
729
730
731
732
733
734
735
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
736

Ultimanet's avatar
Ultimanet committed
737
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
738

Ultimanet's avatar
Ultimanet committed
739
740
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
741
742
743

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
744
745
        num : int
            Number of points.
746
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
747
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
748

Ultimanet's avatar
Ultimanet committed
749
        Attributes
Marco Selig's avatar
Marco Selig committed
750
        ----------
Ultimanet's avatar
Ultimanet committed
751
752
        para : numpy.ndarray
            Array containing the number of points.
753
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
754
755
756
757
758
759
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
760
    """
761

csongor's avatar
csongor committed
762
    def __init__(self, num, dtype=np.dtype('float')):
Ultimanet's avatar
Ultimanet committed
763
764
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
765

Ultimanet's avatar
Ultimanet committed
766
767
768
769
            Parameters
            ----------
            num : int
                Number of points.
770
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
771
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
772

Ultimanet's avatar
Ultimanet committed
773
774
775
776
            Returns
            -------
            None.
        """
Ultima's avatar
Ultima committed
777
        self._cache_dict = {'check_codomain': {}}
778
779
        self.paradict = point_space_paradict(num=num)

780
781
        # parse dtype
        dtype = np.dtype(dtype)
Ultima's avatar
Ultima committed
782
783
784
785
786
787
788
789
790
        if dtype not in [np.dtype('bool'),
                         np.dtype('int16'),
                         np.dtype('int32'),
                         np.dtype('int64'),
                         np.dtype('float32'),
                         np.dtype('float64'),
                         np.dtype('complex64'),
                         np.dtype('complex128')]:
            raise ValueError(about._errors.cstring(
791
                             "WARNING: incompatible dtype: " + str(dtype)))
Ultima's avatar
Ultima committed
792
        self.dtype = dtype
793

Ultimanet's avatar
Ultimanet committed
794
        self.discrete = True
Ultima's avatar
Ultima committed
795
#        self.harmonic = False
796
        self.distances = (np.float(1),)
Marco Selig's avatar
Marco Selig committed
797

Ultimanet's avatar
Ultimanet committed
798
799
800
801
    @property
    def para(self):
        temp = np.array([self.paradict['num']], dtype=int)
        return temp
802

Ultimanet's avatar
Ultimanet committed
803
804
    @para.setter
    def para(self, x):
Ultima's avatar
Ultima committed
805
        self.paradict['num'] = x[0]
806

Ultima's avatar
Ultima committed
807
808
809
810
    def __hash__(self):
        # Extract the identifying parts from the vars(self) dict.
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
811
812
            if key in ['_cache_dict']:
                continue
Ultima's avatar
Ultima committed
813
814
815
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

816
817
818
819
820
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: x[1].__hash__() if x[0] == 'comm' else x)(ii)))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
821
                if ii[0] not in ['_cache_dict']
822
823
824
825
                ]
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

826
    def copy(self):
827
        return point_space(num=self.paradict['num'],
csongor's avatar
csongor committed
828
                           dtype=self.dtype)
829

Ultimanet's avatar
Ultimanet committed
830
831
    def getitem(self, data, key):
        return data[key]
Marco Selig's avatar
Marco Selig committed
832

Ultimanet's avatar
Ultimanet committed
833
    def setitem(self, data, update, key):
834
        data[key] = update
Marco Selig's avatar
Marco Selig committed
835

Ultimanet's avatar
Ultimanet committed
836
    def apply_scalar_function(self, x, function, inplace=False):
837
        return x.apply_scalar_function(function, inplace=inplace)
838

839
    def unary_operation(self, x, op='None', axis=None, **kwargs):
Ultimanet's avatar
Ultimanet committed
840
841
842
        """
        x must be a numpy array which is compatible with the space!
        Valid operations are
843

Ultimanet's avatar
Ultimanet committed
844
        """
845
846
847
848
849
        translation = {'pos': lambda y: getattr(y, '__pos__')(),
                       'neg': lambda y: getattr(y, '__neg__')(),
                       'abs': lambda y: getattr(y, '__abs__')(),
                       'real': lambda y: getattr(y, 'real'),
                       'imag': lambda y: getattr(y, 'imag'),
850
851
852
853
854
855
856
857
                       'nanmin': lambda y: getattr(y, 'nanmin')(axis=axis),
                       'amin': lambda y: getattr(y, 'amin')(axis=axis),
                       'nanmax': lambda y: getattr(y, 'nanmax')(axis=axis),
                       'amax': lambda y: getattr(y, 'amax')(axis=axis),
                       'median': lambda y: getattr(y, 'median')(axis=axis),
                       'mean': lambda y: getattr(y, 'mean')(axis=axis),
                       'std': lambda y: getattr(y, 'std')(axis=axis),
                       'var': lambda y: getattr(y, 'var')(axis=axis),
858
859
                       'argmin_nonflat': lambda y: getattr(y, 'argmin_nonflat')(
                           axis=axis),
csongor's avatar
csongor committed
860
                       'argmin': lambda y: getattr(y, 'argmin')(axis=axis),
861
862
                       'argmax_nonflat': lambda y: getattr(y, 'argmax_nonflat')(
                           axis=axis),
csongor's avatar
csongor committed
863
                       'argmax': lambda y: getattr(y, 'argmax')(axis=axis),
864
                       'conjugate': lambda y: getattr(y, 'conjugate')(),
865
866
                       'sum': lambda y: getattr(y, 'sum')(axis=axis),
                       'prod': lambda y: getattr(y, 'prod')(axis=axis),
867
868
869
870
871
872
873
                       'unique': lambda y: getattr(y, 'unique')(),
                       'copy': lambda y: getattr(y, 'copy')(),
                       'copy_empty': lambda y: getattr(y, 'copy_empty')(),
                       'isnan': lambda y: getattr(y, 'isnan')(),
                       'isinf': lambda y: getattr(y, 'isinf')(),
                       'isfinite': lambda y: getattr(y, 'isfinite')(),
                       'nan_to_num': lambda y: getattr(y, 'nan_to_num')(),
874
875
                       'all': lambda y: getattr(y, 'all')(axis=axis),
                       'any': lambda y: getattr(y, 'any')(axis=axis),
876
                       'None': lambda y: y}
Marco Selig's avatar
Marco Selig committed
877

878
879
        return translation[op](x, **kwargs)

Ultimanet's avatar
Ultimanet committed
880
    def binary_operation(self, x, y, op='None', cast=0):
881

Ultima's avatar
Ultima committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
        translation = {'add': lambda z: getattr(z, '__add__'),
                       'radd': lambda z: getattr(z, '__radd__'),
                       'iadd': lambda z: getattr(z, '__iadd__'),
                       'sub': lambda z: getattr(z, '__sub__'),
                       'rsub': lambda z: getattr(z, '__rsub__'),
                       'isub': lambda z: getattr(z, '__isub__'),
                       'mul': lambda z: getattr(z, '__mul__'),
                       'rmul': lambda z: getattr(z, '__rmul__'),
                       'imul': lambda z: getattr(z, '__imul__'),
                       'div': lambda z: getattr(z, '__div__'),
                       'rdiv': lambda z: getattr(z, '__rdiv__'),
                       'idiv': lambda z: getattr(z, '__idiv__'),
                       'pow': lambda z: getattr(z, '__pow__'),
                       'rpow': lambda z: getattr(z, '__rpow__'),
                       'ipow': lambda z: getattr(z, '__ipow__'),
                       'ne': lambda z: getattr(z, '__ne__'),
                       'lt': lambda z: getattr(z, '__lt__'),
                       'le': lambda z: getattr(z, '__le__'),
                       'eq': lambda z: getattr(z, '__eq__'),
                       'ge': lambda z: getattr(z, '__ge__'),
                       'gt': lambda z: getattr(z, '__gt__'),
                       'None': lambda z: lambda u: u}
904

Ultimanet's avatar
Ultimanet committed
905
906
907
        if (cast & 1) != 0:
            x = self.cast(x)
        if (cast & 2) != 0:
908
909
            y = self.cast(y)

Ultimanet's avatar
Ultimanet committed
910
        return translation[op](x)(y)
Marco Selig's avatar
Marco Selig committed
911

912
    def get_shape(self):
913
        return (self.paradict['num'],)
Marco Selig's avatar
Marco Selig committed
914

Ultima's avatar
Ultima committed
915
    def get_dim(self):
Ultimanet's avatar
Ultimanet committed
916
917
        """
            Computes the dimension of the space, i.e.\  the number of points.
Marco Selig's avatar
Marco Selig committed
918

Ultimanet's avatar
Ultimanet committed
919
920
921
922
923
            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension as an array with one component
                or as a scalar (default: False).
Marco Selig's avatar
Marco Selig committed
924

Ultimanet's avatar
Ultimanet committed
925
926
927
928
929
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
Ultima's avatar
Ultima committed
930
        return np.prod(self.get_shape())
Marco Selig's avatar
Marco Selig committed
931

932
    def get_dof(self, split=False):
Ultimanet's avatar
Ultimanet committed
933
934
935
936
        """
            Computes the number of degrees of freedom of the space, i.e./  the
            number of points for real-valued fields and twice that number for
            complex-valued fields.
Marco Selig's avatar
Marco Selig committed
937

Ultimanet's avatar
Ultimanet committed
938
939
940
941
942
            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
Ultima's avatar
Ultima committed
943
944
945
946
        if split:
            dof = self.get_shape()
            if issubclass(self.dtype.type, np.complexfloating):
                dof = tuple(np.array(dof)*2)
947
        else:
Ultima's avatar
Ultima committed
948
949
950
951
            dof = self.get_dim()
            if issubclass(self.dtype.type, np.complexfloating):
                dof = dof * 2
        return dof
952
953
954
955

    def get_vol(self, split=False):
        if split:
            return self.distances
Ultimanet's avatar
Ultimanet committed
956
        else:
957
            return np.prod(self.distances)
Marco Selig's avatar
Marco Selig committed
958

959
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
960
        """
961
            Calculates the meta volumes.
Ultimanet's avatar
Ultimanet committed
962

963
964
965
966
967
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions. In the case of an :py:class:`rg_space`, the
            meta volumes are simply the pixel volumes.
Marco Selig's avatar
Marco Selig committed
968
969
970

            Parameters
            ----------
971
972
973
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each pixel (default: False).
Marco Selig's avatar
Marco Selig committed
974
975
976

            Returns
            -------
977
978
            mol : {numpy.ndarray, float}
                Meta volume of the pixels or the complete space.
Ultimanet's avatar
Ultimanet committed
979
        """
980
981
982
983
984
        if not split:
            return self.get_dim() * self.get_vol()
        else:
            mol = self.cast(1, dtype=np.dtype('float'))
            return self.calc_weight(mol, power=1)
985

986
987
988
989
    def enforce_power(self, spec, **kwargs):
        """
            Raises an error since the power spectrum is ill-defined for point
            spaces.
Marco Selig's avatar
Marco Selig committed
990
        """
991
992
993
        raise AttributeError(about._errors.cstring(
            "ERROR: the definition of power spectra is ill-defined for " +
            "(unstructured) point spaces."))
Ultimanet's avatar
Ultimanet committed
994

995
996
997
998
    def _enforce_power_helper(self, spec, size, kindex):
        # Now it's about to extract a powerspectrum from spec
        # First of all just extract a numpy array. The shape is cared about
        # later.
999
        dtype = np.dtype('float')
1000
1001
1002
1003
        # Case 1: spec is a function
        if callable(spec):
            # Try to plug in the kindex array in the function directly
            try:
1004
                spec = np.array(spec(kindex), dtype=dtype)
1005
1006
1007
1008
1009
            except:
                # Second try: Use a vectorized version of the function.
                # This is slower, but better than nothing
                try:
                    spec = np.array(np.vectorize(spec)(kindex),
1010
                                    dtype=dtype)
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
                except:
                    raise TypeError(about._errors.cstring(
                        "ERROR: invalid power spectra function."))

        # Case 2: spec is a field:
        elif isinstance(spec, field):
            try:
                spec = spec.val.get_full_data()
            except AttributeError:
                spec = spec.val
1021
            spec = spec.astype(dtype).flatten()
Marco Selig's avatar
Marco Selig committed
1022

1023
1024
        # Case 3: spec is a scalar or something else:
        else:
1025
            spec = np.array(spec, dtype=dtype).flatten()
1026
1027
1028
1029
1030

        # Make some sanity checks
        # check finiteness
        if not np.all(np.isfinite(spec)):
            about.warnings.cprint("WARNING: infinite value(s).")
Marco Selig's avatar
Marco Selig committed
1031

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        # check positivity (excluding null)
        if np.any(spec < 0):
            raise ValueError(about._errors.cstring(
                "ERROR: nonpositive value(s)."))
        if np.any(spec == 0):
            about.warnings.cprint("WARNING: nonpositive value(s).")

        # Set the size parameter
        if size is None:
            size = len(kindex)

        # Fix the size of the spectrum
        # If spec is singlevalued, expand it
        if np.size(spec) == 1:
            spec = spec * np.ones(size, dtype=spec.dtype)
        # If the size does not fit at all, throw an exception
        elif np.size(spec) < size:
            raise ValueError(about._errors.cstring("ERROR: size mismatch ( " +
                                                   str(np.size(spec)) + " < " +
                                                   str(size) + " )."))
        elif np.size(spec) > size:
            about.warnings.cprint("WARNING: power spectrum cut to size ( == " +
                                  str(size) + " ).")
            spec = spec[:size]

        return spec
Ultimanet's avatar
Ultimanet committed
1058

1059
    def check_codomain(self, codomain):
Ultima's avatar
Ultima committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        check_dict = self._cache_dict['check_codomain']
        temp_id = id(codomain)
        if temp_id in check_dict:
            return check_dict[temp_id]
        else:
            temp_result = self._check_codomain(codomain)
            check_dict[temp_id] = temp_result
            return temp_result

    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
1070
        """
1071
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
1072
1073
1074

            Parameters
            ----------
1075
1076
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
1077
1078
1079

            Returns
            -------
1080
1081
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
1082
        """
1083
1084
        if codomain is None:
            return False
1085

1086
1087
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
Ultima's avatar
Ultima committed
1088
                "ERROR: invalid input. The given input is not a nifty space."))
Ultimanet's avatar
Ultimanet committed
1089

1090
1091
1092
1093
        if codomain == self:
            return True
        else:
            return False
Ultimanet's avatar
Ultimanet committed
1094

1095
1096
1097
1098
1099
    def get_codomain(self, **kwargs):