rg_space.py 6.79 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
from functools import reduce
Marco Selig's avatar
Marco Selig committed
19
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
20

Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import dobj
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..field import Field
from .structured_domain import StructuredDomain
csongor's avatar
csongor committed
24

Marco Selig's avatar
Marco Selig committed
25

Martin Reinecke's avatar
Martin Reinecke committed
26
27
class RGSpace(StructuredDomain):
    """NIFTy subclass for regular Cartesian grids.
Martin Reinecke's avatar
Martin Reinecke committed
28
29
30

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
31
    shape : int or tuple of int
Martin Reinecke's avatar
Martin Reinecke committed
32
        Number of grid points or numbers of gridpoints along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
33
    distances : None or float or tuple of float, optional
Philipp Arras's avatar
Philipp Arras committed
34
        Distance between two grid points along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
35

Philipp Arras's avatar
Philipp Arras committed
36
37
38
        By default (distances=None):
          - If harmonic==True, all distances will be set to 1
          - If harmonic==False, the distance along each axis will be
Martin Reinecke's avatar
Martin Reinecke committed
39
40
            set to the inverse of the number of points along that axis.

Martin Reinecke's avatar
Martin Reinecke committed
41
    harmonic : bool, optional
42
        Whether the space represents a grid in position or harmonic space.
Philipp Arras's avatar
Philipp Arras committed
43
        Default: False.
Marco Selig's avatar
Marco Selig committed
44
    """
Martin Reinecke's avatar
Martin Reinecke committed
45
    _needed_for_hash = ["_distances", "_shape", "_harmonic"]
46

Martin Reinecke's avatar
Martin Reinecke committed
47
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
48
        self._harmonic = bool(harmonic)
Martin Reinecke's avatar
Martin Reinecke committed
49
50
51
        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
52
53
54
55
56
57
58
59
60
61
62
63
64

        if distances is None:
            if self.harmonic:
                self._distances = (1.,) * len(self._shape)
            else:
                self._distances = tuple(1./s for s in self._shape)
        elif np.isscalar(distances):
            self._distances = (float(distances),) * len(self._shape)
        else:
            temp = np.empty(len(self.shape), dtype=np.float64)
            temp[:] = distances
            self._distances = tuple(temp)

65
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
66
        self._size = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
67

68
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
69
70
        return ("RGSpace(shape={}, distances={}, harmonic={})"
                .format(self.shape, self.distances, self.harmonic))
71

72
73
74
75
76
77
78
79
80
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
Martin Reinecke's avatar
Martin Reinecke committed
81
82
    def size(self):
        return self._size
83

Martin Reinecke's avatar
Martin Reinecke committed
84
    @property
85
86
    def scalar_dvol(self):
        return self._dvol
87

88
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
89
90
        if (not self.harmonic):
            raise NotImplementedError
91
92
        ibegin = dobj.ibegin_from_shape(self._shape)
        res = np.arange(self.local_shape[0], dtype=np.float64) + ibegin[0]
Martin Reinecke's avatar
Martin Reinecke committed
93
94
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
95
            return Field.from_local_data(self, res)
Martin Reinecke's avatar
Martin Reinecke committed
96
97
        res *= res
        for i in range(1, len(self.shape)):
98
            tmp = np.arange(self.local_shape[i], dtype=np.float64) + ibegin[i]
Martin Reinecke's avatar
Martin Reinecke committed
99
100
101
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
102
        return Field.from_local_data(self, np.sqrt(res))
theos's avatar
theos committed
103

104
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
105
106
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
124
            # FIXME: this needs to improve for MPI. Maybe unique()/gather()?
Martin Reinecke's avatar
Martin Reinecke committed
125
            tmp = self.get_k_length_array().to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
126
            tmp = np.unique(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
127
128
129
130
131
132
133
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
134
135
    @staticmethod
    def _kernel(x, sigma):
136
        from ..sugar import exp
137
        return exp(x*x * (-2.*np.pi*np.pi*sigma*sigma))
Martin Reinecke's avatar
Martin Reinecke committed
138

139
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
140
141
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
142
        return lambda x: self._kernel(x, sigma)
theos's avatar
theos committed
143

Martin Reinecke's avatar
Martin Reinecke committed
144
    def get_default_codomain(self):
Martin Reinecke's avatar
Martin Reinecke committed
145
146
147
148
149
150
151
152
        """Returns a :class:`RGSpace` object representing the (position or
        harmonic) partner domain of `self`, depending on `self.harmonic`.

        Returns
        -------
        RGSpace
            The parter domain
        """
Martin Reinecke's avatar
Martin Reinecke committed
153
154
155
156
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
Martin Reinecke's avatar
Martin Reinecke committed
157
158
159
        """Raises `TypeError` if `codomain` is not a matching partner domain
        for `self`.
        """
Martin Reinecke's avatar
Martin Reinecke committed
160
161
162
163
164
165
166
167
168
169
170
171
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
172
173
174
        if not np.all(abs(np.array(self.shape) *
                          np.array(self.distances) *
                          np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
175
176
177
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

178
179
    @property
    def distances(self):
Martin Reinecke's avatar
Martin Reinecke committed
180
181
182
        """tuple of float : Distance between grid points along each axis.
        The n-th entry of the tuple is the distance between neighboring
        grid points along the n-th dimension.
183
        """
184
        return self._distances