energy_operators.py 15.4 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
23
from ..field import Field
from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
24
25
26
from ..multi_domain import MultiDomain
from ..multi_field import MultiField
from ..sugar import makeDomain, makeOp
Philipp Arras's avatar
Philipp Arras committed
27
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
28
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
29
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
30
from .sandwich_operator import SandwichOperator
31
from .scaling_operator import ScalingOperator
Philipp Arras's avatar
Philipp Arras committed
32
from .simple_linear_operators import FieldAdapter, VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
33
34
35


class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
36
    """Operator which has a scalar domain as target domain.
37

Martin Reinecke's avatar
Martin Reinecke committed
38
    It is intended as an objective function for field inference.
39

Philipp Arras's avatar
Philipp Arras committed
40
41
42
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
43
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
44
       divergence.
45
    """
Martin Reinecke's avatar
Martin Reinecke committed
46
47
48
    _target = DomainTuple.scalar_domain()


49
50
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
51

Philipp Arras's avatar
Philipp Arras committed
52
53
54
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
55
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
56
    """
Philipp Arras's avatar
Philipp Arras committed
57

Martin Reinecke's avatar
Martin Reinecke committed
58
59
60
    def __init__(self, domain):
        self._domain = domain

Philipp Arras's avatar
Philipp Arras committed
61
    def apply(self, x, difforder):
62
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
63
64
65
66
67
        res = Field.scalar(x.vdot(x))
        if difforder == self.VALUE_ONLY:
            return res
        jac = VdotOperator(2*x)
        return Linearization(res, jac, want_metric=difforder == self.WITH_METRIC)
Martin Reinecke's avatar
Martin Reinecke committed
68

Martin Reinecke's avatar
Martin Reinecke committed
69

Martin Reinecke's avatar
Martin Reinecke committed
70
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
71
    """Computes the L2-norm of a Field or MultiField with respect to a
72
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
73
74
75

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
76
77
78

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
79
    endo : EndomorphicOperator
80
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
81
    """
Philipp Arras's avatar
Philipp Arras committed
82
83

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
84
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
85
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
86
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
87
88
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
89

Philipp Arras's avatar
Philipp Arras committed
90
    def apply(self, x, difforder):
91
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
92
93
94
95
96
        t1 = self._op(x)
        res = Field.scalar(0.5*x.vdot(t1))
        if difforder == self.VALUE_ONLY:
            return res
        return Linearization(res, VdotOperator(t1))
Martin Reinecke's avatar
Martin Reinecke committed
97

Philipp Arras's avatar
Philipp Arras committed
98

99
class VariableCovarianceGaussianEnergy(EnergyOperator):
Reimar Leike's avatar
Reimar Leike committed
100
    """Computes the negative log pdf of a Gaussian with unknown covariance.
101

Reimar Leike's avatar
Reimar Leike committed
102
    The covariance is assumed to be diagonal.
103
104

    .. math ::
Reimar Leike's avatar
Reimar Leike committed
105
        E(s,D) = - \\log G(s, D) = 0.5 (s)^\\dagger D^{-1} (s) + 0.5 tr log(D),
106
107

    an information energy for a Gaussian distribution with residual s and
108
    diagonal covariance D.
Reimar Leike's avatar
Reimar Leike committed
109
110
    The domain of this energy will be a MultiDomain with two keys,
    the target will be the scalar domain.
111
112
113

    Parameters
    ----------
114
    domain : Domain, DomainTuple, tuple of Domain
Reimar Leike's avatar
Reimar Leike committed
115
        domain of the residual and domain of the covariance diagonal.
116

117
    residual : key
Philipp Arras's avatar
Philipp Arras committed
118
        Residual key of the Gaussian.
119

Philipp Arras's avatar
Philipp Arras committed
120
    inverse_covariance : key
121
        Inverse covariance diagonal key of the Gaussian.
122
123
    """

Philipp Arras's avatar
Philipp Arras committed
124
125
126
127
128
    def __init__(self, domain, residual_key, inverse_covariance_key):
        self._r = str(residual_key)
        self._icov = str(inverse_covariance_key)
        dom = DomainTuple.make(domain)
        self._domain = MultiDomain.make({self._r: dom, self._icov: dom})
129

Philipp Arras's avatar
Philipp Arras committed
130
    def apply(self, x, difforder):
131
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
132
133
134
135
136
137
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
        res = 0.5*(x[self._r].vdot(x[self._r]*x[self._icov]).real - x[self._icov].log().sum())
        if difforder == self.VALUE_ONLY:
            return Field.scalar(res)
        if difforder == self.WITH_JAC:
Philipp Arras's avatar
Philipp Arras committed
138
            return res
Philipp Arras's avatar
Philipp Arras committed
139
        mf = {self._r: x.val[self._icov], self._icov: .5*x.val[self._icov]**(-2)}
Philipp Arras's avatar
Philipp Arras committed
140
        return res.add_metric(makeOp(MultiField.from_dict(mf)))
141

Martin Reinecke's avatar
Martin Reinecke committed
142
143

class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
144
    """Computes a negative-log Gaussian.
145

Philipp Arras's avatar
Philipp Arras committed
146
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
147

Philipp Arras's avatar
Philipp Arras committed
148
149
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
150

Philipp Arras's avatar
Philipp Arras committed
151
152
    an information energy for a Gaussian distribution with mean m and
    covariance D.
153

Philipp Arras's avatar
Philipp Arras committed
154
155
156
157
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
158
159
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
160
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
161
162
163
164
165
166
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
167
    """
Martin Reinecke's avatar
Martin Reinecke committed
168

169
    def __init__(self, mean=None, inverse_covariance=None, domain=None):
Martin Reinecke's avatar
Martin Reinecke committed
170
171
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
172
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
173
174
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
175
176
177
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
178
179
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
180
181
182
183
184
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
185
        if inverse_covariance is None:
186
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Philipp Arras's avatar
Philipp Arras committed
187
            self._met = ScalingOperator(self._domain, 1)
Martin Reinecke's avatar
Martin Reinecke committed
188
        else:
189
            self._op = QuadraticFormOperator(inverse_covariance)
Philipp Arras's avatar
Philipp Arras committed
190
            self._met = inverse_covariance
Martin Reinecke's avatar
Martin Reinecke committed
191
192

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
193
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
194
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
195
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
196
        else:
Philipp Arras's avatar
Philipp Arras committed
197
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
198
199
                raise ValueError("domain mismatch")

Philipp Arras's avatar
Philipp Arras committed
200
    def apply(self, x, difforder):
201
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
202
203
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
Philipp Arras's avatar
Philipp Arras committed
204
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
205
        res = self._op(residual).real
Philipp Arras's avatar
Philipp Arras committed
206
        if difforder < self.WITH_METRIC:
Martin Reinecke's avatar
Martin Reinecke committed
207
            return res
Philipp Arras's avatar
Philipp Arras committed
208
        return res.add_metric(self._met)
Martin Reinecke's avatar
Martin Reinecke committed
209
210
211


class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
212
213
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
214

Philipp Arras's avatar
Philipp Arras committed
215
    Represents up to an f-independent term :math:`log(d!)`:
216

Philipp Arras's avatar
Philipp Arras committed
217
218
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
219

Philipp Arras's avatar
Philipp Arras committed
220
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
221
    the counts.
Philipp Arras's avatar
Philipp Arras committed
222
223
224
225
226
227

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
228
    """
Philipp Arras's avatar
Philipp Arras committed
229

230
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
231
232
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
233
        if np.any(d.val < 0):
Philipp Arras's avatar
Philipp Arras committed
234
            raise ValueError
235
236
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
237

Philipp Arras's avatar
Philipp Arras committed
238
    def apply(self, x, difforder):
239
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
240
241
242
243
244
245
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
        res = x.sum() - x.log().vdot(self._d)
        if difforder == self.VALUE_ONLY:
            return Field.scalar(res)
        if difforder == self.WITH_JAC:
246
            return res
Philipp Arras's avatar
Philipp Arras committed
247
        return res.add_metric(makeOp(1./x.val))
Martin Reinecke's avatar
Martin Reinecke committed
248

249

250
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
251
    """Computes the negative log-likelihood of the inverse gamma distribution.
252
253
254

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
255
256
257
258
259
260
261
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
262
263
264
265
266
267
268

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
269
    """
Philipp Arras's avatar
Philipp Arras committed
270

271
272
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
273
            raise TypeError
Philipp Arras's avatar
Philipp Arras committed
274
        self._domain = DomainTuple.make(beta.domain)
275
276
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
277
            alpha = Field(beta.domain, np.full(beta.shape, alpha))
278
279
280
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
281

Philipp Arras's avatar
Philipp Arras committed
282
    def apply(self, x, difforder):
283
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
284
285
286
287
288
289
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
        res = x.log().vdot(self._alphap1) + x.one_over().vdot(self._beta)
        if difforder == self.VALUE_ONLY:
            return Field.scalar(res)
        if difforder == self.WITH_JAC:
290
            return res
Philipp Arras's avatar
Philipp Arras committed
291
        return res.add_metric(makeOp(self._alphap1/(x.val**2)))
292
293


294
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
295
    """Computes likelihood energy corresponding to Student's t-distribution.
296
297

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
298
299
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
300

Lukas Platz's avatar
Lukas Platz committed
301
    where f is a field defined on `domain`.
302
303
304

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
305
306
    domain : `Domain` or `DomainTuple`
        Domain of the operator
307
308
309
310
311
312
313
314
    theta : Scalar
        Degree of freedom parameter for the student t distribution
    """

    def __init__(self, domain, theta):
        self._domain = DomainTuple.make(domain)
        self._theta = theta

Philipp Arras's avatar
Philipp Arras committed
315
    def apply(self, x, difforder):
316
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
317
318
319
320
321
322
323
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
        res = ((self._theta+1)/2)*(x**2/self._theta).log1p().sum()
        if difforder == self.VALUE_ONLY:
            return Field.scalar(res)
        if difforder == self.WITH_JAC:
            return res
324
        met = ScalingOperator(self.domain, (self._theta+1) / (self._theta+3))
Philipp Arras's avatar
Philipp Arras committed
325
        return res.add_metric(met)
326
327


Martin Reinecke's avatar
Martin Reinecke committed
328
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
329
    """Computes likelihood energy of expected event frequency constrained by
330
331
    event data.

Philipp Arras's avatar
Philipp Arras committed
332
333
334
335
336
337
338
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

339
340
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
341
    d : Field
Philipp Arras's avatar
Philipp Arras committed
342
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
343
    """
Philipp Arras's avatar
Philipp Arras committed
344

345
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
346
347
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
Martin Reinecke's avatar
stage2    
Martin Reinecke committed
348
        if not np.all(np.logical_or(d.val == 0, d.val == 1)):
Philipp Arras's avatar
Philipp Arras committed
349
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
350
        self._d = d
351
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
352

Philipp Arras's avatar
Philipp Arras committed
353
    def apply(self, x, difforder):
354
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
355
356
357
358
359
360
361
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
        res = -x.log().vdot(self._d) + (1.-x).log().vdot(self._d-1.)
        if difforder == self.VALUE_ONLY:
            return Field.scalar(res)
        if difforder == self.WITH_JAC:
            return res
Philipp Arras's avatar
Philipp Arras committed
362
        met = makeOp(1./(x.val*(1. - x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
363
        met = SandwichOperator.make(x.jac, met)
Philipp Arras's avatar
Philipp Arras committed
364
        return res.add_metric(met)
Martin Reinecke's avatar
Martin Reinecke committed
365
366


367
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
368
369
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
370

Philipp Arras's avatar
Philipp Arras committed
371
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
372

Philipp Arras's avatar
Philipp Arras committed
373
374
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
375

Martin Reinecke's avatar
Martin Reinecke committed
376
    Other field priors can be represented via transformations of a white
377
378
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
379
    By implementing prior information this way, the field prior is represented
380
381
382
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
383
384
385
386
387
388
389
390
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
391
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
392
393
394
395
396
397
        to use to draw Gaussian samples.

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
398
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
399
    """
Philipp Arras's avatar
Philipp Arras committed
400

401
    def __init__(self, lh, ic_samp=None, _c_inp=None):
Martin Reinecke's avatar
Martin Reinecke committed
402
403
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
404
405
        if _c_inp is not None:
            _, self._prior = self._prior.simplify_for_constant_input(_c_inp)
Martin Reinecke's avatar
Martin Reinecke committed
406
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
407
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
408

Philipp Arras's avatar
Philipp Arras committed
409
    def apply(self, x, difforder):
410
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
411
412
413
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
        if difforder <= self.WITH_JAC or self._ic_samp is None:
Philipp Arras's avatar
Philipp Arras committed
414
            return (self._lh + self._prior)(x)
Philipp Arras's avatar
Philipp Arras committed
415
416
        lhx, prx = self._lh(x), self._prior(x)
        return (lhx+prx).add_metric(SamplingEnabler(lhx.metric, prx.metric, self._ic_samp))
Martin Reinecke's avatar
Martin Reinecke committed
417

Philipp Arras's avatar
Philipp Arras committed
418
419
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
420
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
421
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
422

423
424
425
426
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        out, lh1 = self._lh.simplify_for_constant_input(c_inp)
        return out, StandardHamiltonian(lh1, self._ic_samp, _c_inp=c_inp)

Martin Reinecke's avatar
Martin Reinecke committed
427

Martin Reinecke's avatar
Martin Reinecke committed
428
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
429
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
430

431
432
433
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
434
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
435
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
436
437
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
438

Philipp Arras's avatar
Docs    
Philipp Arras committed
439
440
441
442
443
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
444

Philipp Arras's avatar
Docs    
Philipp Arras committed
445
446
447
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
448
    """
Martin Reinecke's avatar
Martin Reinecke committed
449
450
451

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
452
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
453
454
        self._res_samples = tuple(res_samples)

Philipp Arras's avatar
Philipp Arras committed
455
    def apply(self, x, difforder):
456
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
457
458
459
460
        if difforder >= self.WITH_JAC:
            x = Linearization.make_var(x, difforder == self.WITH_METRIC)
        mymap = map(lambda v: self._h(x+v), self._res_samples)
        return utilities.my_sum(mymap)/len(self._res_samples)