nifty_lm.py 77.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division
35

Marco Selig's avatar
Marco Selig committed
36
37
38
39
40
import os
import numpy as np
import pylab as pl
from matplotlib.colors import LogNorm as ln
from matplotlib.ticker import LogFormatter as lf
41
42
43
44
45
46
47

from nifty.nifty_core import space,\
                             point_space,\
                             field
from keepers import about,\
                    global_configuration as gc,\
                    global_dependency_injector as gdi
Ultimanet's avatar
Ultimanet committed
48
from nifty.nifty_paradict import lm_space_paradict,\
49
50
51
52
                                 gl_space_paradict,\
                                 hp_space_paradict
from nifty.nifty_power_indices import lm_power_indices

Ultimanet's avatar
Ultimanet committed
53
from nifty.nifty_random import random
54

Ultima's avatar
Ultima committed
55
56
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')
57
58

LM_DISTRIBUTION_STRATEGIES = []
Ultima's avatar
Ultima committed
59
60
GL_DISTRIBUTION_STRATEGIES = []
HP_DISTRIBUTION_STRATEGIES = []
Marco Selig's avatar
Marco Selig committed
61
62


63
class lm_space(point_space):
Marco Selig's avatar
Marco Selig committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
83
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
113
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
114
115
116
117
118
119
120
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """
121
122

    def __init__(self, lmax, mmax=None, dtype=np.dtype('complex128'),
123
                 datamodel='np', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
124
125
126
127
128
129
130
131
132
133
134
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
135
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """
151

152
        # check imports
Ultima's avatar
Ultima committed
153
        if not gc['use_libsharp'] and not gc['use_healpy']:
154
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
155
                "ERROR: neither libsharp_wrapper_gl nor healpy activated."))
156

157
        self.paradict = lm_space_paradict(lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
158

159
160
161
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('complex64'), np.dtype('complex128')]:
Marco Selig's avatar
Marco Selig committed
162
            about.warnings.cprint("WARNING: data type set to default.")
163
164
            dtype = np.dtype('complex128')
        self.dtype = dtype
165

166
        # set datamodel
167
168
169
170
        if datamodel not in ['np']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'np'
        else:
171
172
            self.datamodel = datamodel

Marco Selig's avatar
Marco Selig committed
173
        self.discrete = True
174
        self.harmonic = True
175
        self.distances = (np.float(1),)
176
        self.comm = self._parse_comm(comm)
177
178
179
180
181
182
183

        self.power_indices = lm_power_indices(
                    lmax=self.paradict['lmax'],
                    dim=self.get_dim(),
                    comm=self.comm,
                    datamodel=self.datamodel,
                    allowed_distribution_strategies=LM_DISTRIBUTION_STRATEGIES)
Marco Selig's avatar
Marco Selig committed
184

185
186
    @property
    def para(self):
187
        temp = np.array([self.paradict['lmax'],
188
189
                         self.paradict['mmax']], dtype=int)
        return temp
190

191
192
193
194
195
    @para.setter
    def para(self, x):
        self.paradict['lmax'] = x[0]
        self.paradict['mmax'] = x[1]

Ultima's avatar
Ultima committed
196
197
198
199
200
201
202
203
    def __hash__(self):
        result_hash = 0
        for (key, item) in vars(self).items():
            if key in ['power_indices']:
                continue
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

Ultima's avatar
Ultima committed
204
205
206
207
208
209
210
211
212
213
214
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: tuple(x) if
                  isinstance(x, np.ndarray) else x)(ii[1])))
                for ii in vars(self).iteritems()
                if ii[0] not in ['power_indices', 'comm']]
        temp.append(('comm', self.comm.__hash__()))
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

215
    def copy(self):
216
217
218
219
        return lm_space(lmax=self.paradict['lmax'],
                        mmax=self.paradict['mmax'],
                        dtype=self.dtype)

220
    def get_shape(self):
Ultima's avatar
Ultima committed
221
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
222
223
        mmax = self.paradict['mmax']
        return (np.int((mmax + 1) * (lmax + 1) - ((mmax + 1) * mmax) // 2),)
224
225

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        """
            Computes the number of degrees of freedom of the space, taking into
            account symmetry constraints and complex-valuedness.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            The number of degrees of freedom is reduced due to the hermitian
            symmetry, which is assumed for the spherical harmonics components.
        """
240
241
        # dof = 2*dim-(lmax+1) = (lmax+1)*(2*mmax+1)*(mmax+1)*mmax
        lmax = self.paradict['lmax']
Ultima's avatar
Ultima committed
242
        mmax = self.paradict['mmax']
243
244
245
246
247
        dof = np.int((lmax + 1) * (2 * mmax + 1) - (mmax + 1) * mmax)
        if split:
            return (dof, )
        else:
            return dof
Marco Selig's avatar
Marco Selig committed
248

249
    def get_meta_volume(self, split=False):
Marco Selig's avatar
Marco Selig committed
250
        """
251
            Calculates the meta volumes.
Marco Selig's avatar
Marco Selig committed
252

253
254
255
256
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.
Marco Selig's avatar
Marco Selig committed
257
258
259

            Parameters
            ----------
260
261
262
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).
Marco Selig's avatar
Marco Selig committed
263
264
265

            Returns
            -------
266
267
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.
Marco Selig's avatar
Marco Selig committed
268

269
270
271
272
273
            Notes
            -----
            The spherical harmonics components with :math:`m=0` have meta
            volume 1, the ones with :math:`m>0` have meta volume 2, sinnce they
            each determine another component with negative :math:`m`.
Marco Selig's avatar
Marco Selig committed
274
        """
275
276
277
278
279
280
        if not split:
            return np.float(self.get_dof())
        else:
            mol = self.cast(1, dtype=np.float)
            mol[self.paradict['lmax'] + 1:] = 2  # redundant: (l,m) and (l,-m)
            return mol
Marco Selig's avatar
Marco Selig committed
281

282
283
284
285
286
287
288
289
290
    def _cast_to_d2o(self, x, dtype=None, hermitianize=True, **kwargs):
        raise NotImplementedError

    def _cast_to_np(self, x, dtype=None, hermitianize=True, **kwargs):
        casted_x = super(lm_space, self)._cast_to_np(x=x,
                                                     dtype=dtype,
                                                     **kwargs)
        complexity_mask = np.iscomplex(casted_x[:self.paradict['lmax']+1])
        if np.any(complexity_mask):
Ultima's avatar
Ultima committed
291
            about.warnings.cprint("WARNING: Taking the absolute values for " +
292
293
294
295
                                  "all complex entries where lmax==0")
            casted_x[complexity_mask] = np.abs(casted_x[complexity_mask])
        return casted_x

296
    # TODO: Extend to binning/log
297
298
299
300
301
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['lmax'] + 1
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
302
303
304
305
306
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)

    def check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        """
            Checks whether a given codomain is compatible to the
            :py:class:`lm_space` or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`lm_space`,
            :py:class:`gl_space`, and :py:class:`hp_space`.
        """
326
327
        if codomain is None:
            return False
328

329
330
331
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
                "ERROR: The given codomain must be a nifty lm_space."))
Marco Selig's avatar
Marco Selig committed
332

333
334
335
        if self.comm is not codomain.comm:
            return False

336
337
338
        if self.datamodel is not codomain.datamodel:
            return False

339
340
341
        elif isinstance(codomain, gl_space):
            # lmax==mmax
            # nlat==lmax+1
342
            # nlon==2*lmax+1
343
344
345
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (codomain.paradict['nlat'] == self.paradict['lmax']+1) and
                    (codomain.paradict['nlon'] == 2*self.paradict['lmax']+1)):
Marco Selig's avatar
Marco Selig committed
346
347
                return True

348
349
350
351
352
        elif isinstance(codomain, hp_space):
            # lmax==mmax
            # 3*nside-1==lmax
            if ((self.paradict['lmax'] == self.paradict['mmax']) and
                    (3*codomain.paradict['nside']-1 == self.paradict['lmax'])):
Marco Selig's avatar
Marco Selig committed
353
354
355
356
                return True

        return False

357
    def get_codomain(self, coname=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  a pixelization of the two-sphere.

            Parameters
            ----------
            coname : string, *optional*
                String specifying a desired codomain (default: None).

            Returns
            -------
            codomain : nifty.space
                A compatible codomain.

            Notes
            -----
            Possible arguments for `coname` are ``'gl'`` in which case a Gauss-
            Legendre pixelization [#]_ of the sphere is generated, and ``'hp'``
            in which case a HEALPix pixelization [#]_ is generated.

            References
            ----------
            .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
                   High-Resolution Discretization and Fast Analysis of Data
                   Distributed on the Sphere", *ApJ* 622..759G.
383
384
            .. [#] M. Reinecke and D. Sverre Seljebotn, 2013,
                   "Libsharp - spherical
Marco Selig's avatar
Marco Selig committed
385
386
387
388
                   harmonic transforms revisited";
                   `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        """
389
390
391
392
393
        if coname == 'gl' or (coname is None and gc['lm2gl']):
            if self.dtype == np.dtype('complex64'):
                new_dtype = np.float32
            elif self.dtype == np.dtype('complex128'):
                new_dtype = np.float64
Marco Selig's avatar
Marco Selig committed
394
            else:
395
396
397
                raise NotImplementedError
            nlat = self.paradict['lmax'] + 1
            nlon = self.paradict['lmax'] * 2 + 1
398
399
400
401
            return gl_space(nlat=nlat, nlon=nlon, dtype=new_dtype,
                            datamodel=self.datamodel,
                            comm=self.comm)

402
403
        elif coname == 'hp' or (coname is None and not gc['lm2gl']):
            nside = (self.paradict['lmax']+1) // 3
404
405
406
407
            return hp_space(nside=nside,
                            datamodel=self.datamodel,
                            comm=self.comm)

Marco Selig's avatar
Marco Selig committed
408
        else:
409
            raise ValueError(about._errors.cstring(
410
411
412
413
414
415
416
417
418
419
420
421
                "ERROR: unsupported or incompatible codomain '"+coname+"'."))

    def get_random_values(self, **kwargs):
        """
            Generates random field values according to the specifications given
            by the parameters, taking into account complex-valuedness and
            hermitian symmetry.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.
Marco Selig's avatar
Marco Selig committed
422

423
424
425
426
427
428
            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
429

430
431
432
433
434
435
                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
                - "gau" (normal distribution with zero-mean and a given
                    standard
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)
Marco Selig's avatar
Marco Selig committed
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
            spec : {scalar, list, numpy.array, nifty.field, function},
                *optional*
                Power spectrum (default: 1).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
        arg = random.parse_arguments(self, **kwargs)

        if arg is None:
            return np.zeros(self.get_shape(), dtype=self.dtype)

Ultima's avatar
Ultima committed
456
        elif arg['random'] == "pm1":
457
458
459
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
            return self.cast(x)

Ultima's avatar
Ultima committed
460
        elif arg['random'] == "gau":
461
462
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
463
464
                           mean=arg['mean'],
                           std=arg['std'])
465
466
            return self.cast(x)

Ultima's avatar
Ultima committed
467
        elif arg['random'] == "syn":
468
469
470
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
471
472
                if gc['use_libsharp']:
                    x = gl.synalm_f(arg['spec'], lmax=lmax, mmax=mmax)
473
                else:
Ultima's avatar
Ultima committed
474
                    x = hp.synalm(arg['spec'].astype(np.complex128),
475
476
                                  lmax=lmax, mmax=mmax).astype(np.complex64)
            else:
Ultima's avatar
Ultima committed
477
478
                if gc['use_healpy']:
                    x = hp.synalm(arg['spec'], lmax=lmax, mmax=mmax)
479
                else:
Ultima's avatar
Ultima committed
480
                    x = gl.synalm(arg['spec'], lmax=lmax, mmax=mmax)
481
482
            return x

Ultima's avatar
Ultima committed
483
        elif arg['random'] == "uni":
484
485
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
486
487
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
488
489
490
491
            return self.cast(x)

        else:
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
492
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
493

494
    def calc_dot(self, x, y):
Marco Selig's avatar
Marco Selig committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        """
            Computes the discrete inner product of two given arrays of field
            values.

            Parameters
            ----------
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array

            Returns
            -------
            dot : scalar
                Inner product of the two arrays.
        """
511
512
513
        x = self.cast(x)
        y = self.cast(y)

Ultima's avatar
Ultima committed
514
        if gc['use_libsharp']:
515
516
517
518
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
            if self.dtype == np.dtype('complex64'):
                return gl.dotlm_f(x, y, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
519
            else:
520
                return gl.dotlm(x, y, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
521
        else:
522
            return self._dotlm(x, y)
Ultima's avatar
Ultima committed
523

524
525
526
527
528
529
530
    def _dotlm(self, x, y):
        lmax = self.paradict['lmax']
        dot = np.sum(x.real[:lmax + 1] * y.real[:lmax + 1])
        dot += 2 * np.sum(x.real[lmax + 1:] * y.real[lmax + 1:])
        dot += 2 * np.sum(x.imag[lmax + 1:] * y.imag[lmax + 1:])
        return dot

531
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
532
533
534
535
536
537
538
539
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
540
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
541
542
543
544
545
546
547
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array
        """
548
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
549

550
551
        if codomain is None:
            codomain = self.get_codomain()
Marco Selig's avatar
Marco Selig committed
552

553
554
555
556
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
557

558
559
560
561
562
        if isinstance(codomain, gl_space):
            nlat = codomain.paradict['nlat']
            nlon = codomain.paradict['nlon']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']
Marco Selig's avatar
Marco Selig committed
563

564
            # transform
565
566
567
            if self.dtype == np.dtype('complex64'):
                Tx = gl.alm2map_f(x, nlat=nlat, nlon=nlon,
                                  lmax=lmax, mmax=mmax, cl=False)
Marco Selig's avatar
Marco Selig committed
568
            else:
569
570
571
572
                Tx = gl.alm2map(x, nlat=nlat, nlon=nlon,
                                lmax=lmax, mmax=mmax, cl=False)
            # re-weight if discrete
            if codomain.discrete:
573
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
574

575
576
577
578
579
        elif isinstance(codomain, hp_space):
            nside = codomain.paradict['nside']
            lmax = self.paradict['lmax']
            mmax = self.paradict['mmax']

580
            # transform
581
582
583
584
            Tx = hp.alm2map(x.astype(np.complex128), nside, lmax=lmax,
                            mmax=mmax, pixwin=False, fwhm=0.0, sigma=None,
                            invert=False, pol=True, inplace=False)
            # re-weight if discrete
Marco Selig's avatar
Marco Selig committed
585
            if(codomain.discrete):
586
                Tx = codomain.calc_weight(Tx, power=0.5)
Marco Selig's avatar
Marco Selig committed
587
588

        else:
589
590
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported transformation."))
Marco Selig's avatar
Marco Selig committed
591

592
        return Tx.astype(codomain.dtype)
Marco Selig's avatar
Marco Selig committed
593

594
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        """
            Smoothes an array of field values by convolution with a Gaussian
            kernel in position space.

            Parameters
            ----------
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space; for testing: a sigma of -1 will be
                reset to a reasonable value (default: 0).

            Returns
            -------
            Gx : numpy.ndarray
                Smoothed array.
        """
613
        x = self.cast(x)
614
        # check sigma
615
        if sigma == 0:
Ultima's avatar
Ultima committed
616
            return self.unary_operation(x, op='copy')
617
        elif sigma == -1:
Marco Selig's avatar
Marco Selig committed
618
            about.infos.cprint("INFO: invalid sigma reset.")
619
620
            sigma = np.sqrt(2) * np.pi / (self.paradict['lmax'] + 1)
        elif sigma < 0:
Marco Selig's avatar
Marco Selig committed
621
            raise ValueError(about._errors.cstring("ERROR: invalid sigma."))
Ultima's avatar
Ultima committed
622
        if gc['use_healpy']:
623
624
625
            return hp.smoothalm(x, fwhm=0.0, sigma=sigma, invert=False,
                                pol=True, mmax=self.paradict['mmax'],
                                verbose=False, inplace=False)
Marco Selig's avatar
Marco Selig committed
626
        else:
627
628
629
            return gl.smoothalm(x, lmax=self.paradict['lmax'],
                                mmax=self.paradict['mmax'],
                                fwhm=0.0, sigma=sigma, overwrite=False)
Marco Selig's avatar
Marco Selig committed
630

631
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
        """
            Computes the power of an array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.

            Returns
            -------
            spec : numpy.ndarray
                Power contained in the input array.
        """
646
647
648
649
        x = self.cast(x)
        lmax = self.paradict['lmax']
        mmax = self.paradict['mmax']

650
        # power spectrum
651
        if self.dtype == np.dtype('complex64'):
Ultima's avatar
Ultima committed
652
            if gc['use_libsharp']:
653
                return gl.anaalm_f(x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
654
            else:
655
656
657
                return hp.alm2cl(x.astype(np.complex128), alms2=None,
                                 lmax=lmax, mmax=mmax, lmax_out=lmax,
                                 nspec=None).astype(np.float32)
Marco Selig's avatar
Marco Selig committed
658
        else:
Ultima's avatar
Ultima committed
659
            if gc['use_healpy']:
660
661
                return hp.alm2cl(x, alms2=None, lmax=lmax, mmax=mmax,
                                 lmax_out=lmax, nspec=None)
Marco Selig's avatar
Marco Selig committed
662
            else:
663
                return gl.anaalm(x, lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
664

665
666
667
    def get_plot(self, x, title="", vmin=None, vmax=None, power=True,
                 norm=None, cmap=None, cbar=True, other=None, legend=False,
                 mono=True, **kwargs):
Marco Selig's avatar
Marco Selig committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        """
            Creates a plot of field values according to the specifications
            given by the parameters.

            Parameters
            ----------
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: True).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).

        """
712
        if(not pl.isinteractive())and(not bool(kwargs.get("save", False))):
Marco Selig's avatar
Marco Selig committed
713
714
715
716
717
            about.warnings.cprint("WARNING: interactive mode off.")

        if(power):
            x = self.calc_power(x)

718
719
720
            fig = pl.figure(num=None, figsize=(6.4, 4.8), dpi=None, facecolor="none",
                            edgecolor="none", frameon=False, FigureClass=pl.Figure)
            ax0 = fig.add_axes([0.12, 0.12, 0.82, 0.76])
Marco Selig's avatar
Marco Selig committed
721

722
            xaxes = np.arange(self.para[0] + 1, dtype=np.int)
Marco Selig's avatar
Marco Selig committed
723
            if(vmin is None):
724
725
                vmin = np.min(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
726
            if(vmax is None):
727
728
729
730
                vmax = np.max(x[:mono].tolist(
                ) + (xaxes * (2 * xaxes + 1) * x)[1:].tolist(), axis=None, out=None)
            ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * x)[1:], color=[0.0,
                                                                            0.5, 0.0], label="graph 0", linestyle='-', linewidth=2.0, zorder=1)
Marco Selig's avatar
Marco Selig committed
731
            if(mono):
732
733
                ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), x[0], s=20, color=[0.0, 0.5, 0.0], marker='o',
                            cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=1)
Marco Selig's avatar
Marco Selig committed
734
735

            if(other is not None):
736
                if(isinstance(other, tuple)):
Marco Selig's avatar
Marco Selig committed
737
738
                    other = list(other)
                    for ii in xrange(len(other)):
739
                        if(isinstance(other[ii], field)):
Marco Selig's avatar
Marco Selig committed
740
741
742
                            other[ii] = other[ii].power(**kwargs)
                        else:
                            other[ii] = self.enforce_power(other[ii])
743
                elif(isinstance(other, field)):
Marco Selig's avatar
Marco Selig committed
744
745
746
                    other = [other.power(**kwargs)]
                else:
                    other = [self.enforce_power(other)]
747
                imax = max(1, len(other) - 1)
Marco Selig's avatar
Marco Selig committed
748
                for ii in xrange(len(other)):
749
750
                    ax0.loglog(xaxes[1:], (xaxes * (2 * xaxes + 1) * other[ii])[1:], color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)
                                                                                            ** 2, max(0.0, 1.0 - (2 * (ii - imax) / imax)**2)], label="graph " + str(ii + 1), linestyle='-', linewidth=1.0, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
751
                    if(mono):
752
753
                        ax0.scatter(0.5 * (xaxes[1] + xaxes[2]), other[ii][0], s=20, color=[max(0.0, 1.0 - (2 * ii / imax)**2), 0.5 * ((2 * ii - imax) / imax)**2, max(
                            0.0, 1.0 - (2 * (ii - imax) / imax)**2)], marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, zorder=-ii)
Marco Selig's avatar
Marco Selig committed
754
755
756
                if(legend):
                    ax0.legend()

757
            ax0.set_xlim(xaxes[1], xaxes[-1])
Marco Selig's avatar
Marco Selig committed
758
            ax0.set_xlabel(r"$\ell$")
759
            ax0.set_ylim(vmin, vmax)
Marco Selig's avatar
Marco Selig committed
760
761
762
763
            ax0.set_ylabel(r"$\ell(2\ell+1) C_\ell$")
            ax0.set_title(title)

        else:
Ultima's avatar
Ultima committed
764
            x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
765
766
767
            if(np.iscomplexobj(x)):
                if(title):
                    title += " "
768
769
770
771
772
773
                if(bool(kwargs.get("save", False))):
                    save_ = os.path.splitext(
                        os.path.basename(str(kwargs.get("save"))))
                    kwargs.update(save=save_[0] + "_absolute" + save_[1])
                self.get_plot(np.absolute(x), title=title + "(absolute)", vmin=vmin, vmax=vmax,
                              power=False, norm=norm, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)
Marco Selig's avatar
Marco Selig committed
774
775
776
777
#                self.get_plot(np.real(x),title=title+"(real part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
#                self.get_plot(np.imag(x),title=title+"(imaginary part)",vmin=vmin,vmax=vmax,power=False,norm=norm,cmap=cmap,cbar=cbar,other=None,legend=False,**kwargs)
                if(cmap is None):
                    cmap = pl.cm.hsv_r
778
779
780
781
782
                if(bool(kwargs.get("save", False))):
                    kwargs.update(save=save_[0] + "_phase" + save_[1])
                self.get_plot(np.angle(x, deg=False), title=title + "(phase)", vmin=-3.1416, vmax=3.1416, power=False,
                              norm=None, cmap=cmap, cbar=cbar, other=None, legend=False, **kwargs)  # values in [-pi,pi]
                return None  # leave method
Marco Selig's avatar
Marco Selig committed
783
784
            else:
                if(vmin is None):
785
                    vmin = np.min(x, axis=None, out=None)
Marco Selig's avatar
Marco Selig committed
786
                if(vmax is None):
787
788
789
790
791
792
793
794
795
796
                    vmax = np.max(x, axis=None, out=None)
                if(norm == "log")and(vmin <= 0):
                    raise ValueError(about._errors.cstring(
                        "ERROR: nonpositive value(s)."))

                # not a number
                xmesh = np.nan * \
                    np.empty(self.para[::-1] + 1, dtype=np.float16, order='C')
                xmesh[4, 1] = None
                xmesh[1, 4] = None
Marco Selig's avatar
Marco Selig committed
797
                lm = 0
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
                for mm in xrange(self.para[1] + 1):
                    xmesh[mm][mm:] = x[lm:lm + self.para[0] + 1 - mm]
                    lm += self.para[0] + 1 - mm

                s_ = np.array([1, self.para[1] / self.para[0]
                               * (1.0 + 0.159 * bool(cbar))])
                fig = pl.figure(num=None, figsize=(
                    6.4 * s_[0], 6.4 * s_[1]), dpi=None, facecolor="none", edgecolor="none", frameon=False, FigureClass=pl.Figure)
                ax0 = fig.add_axes(
                    [0.06 / s_[0], 0.06 / s_[1], 1.0 - 0.12 / s_[0], 1.0 - 0.12 / s_[1]])
                ax0.set_axis_bgcolor([0.0, 0.0, 0.0, 0.0])

                xaxes = np.arange(self.para[0] + 2, dtype=np.int) - 0.5
                yaxes = np.arange(self.para[1] + 2, dtype=np.int) - 0.5
                if(norm == "log"):
                    n_ = ln(vmin=vmin, vmax=vmax)
Marco Selig's avatar
Marco Selig committed
814
815
                else:
                    n_ = None
816
817
818
819
                sub = ax0.pcolormesh(xaxes, yaxes, np.ma.masked_where(np.isnan(
                    xmesh), xmesh), cmap=cmap, norm=n_, vmin=vmin, vmax=vmax, clim=(vmin, vmax))
                ax0.set_xlim(xaxes[0], xaxes[-1])
                ax0.set_xticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
820
                ax0.set_xlabel(r"$\ell$")
821
822
                ax0.set_ylim(yaxes[0], yaxes[-1])
                ax0.set_yticks([0], minor=False)
Marco Selig's avatar
Marco Selig committed
823
824
825
                ax0.set_ylabel(r"$m$")
                ax0.set_aspect("equal")
                if(cbar):
826
827
828
829
830
831
                    if(norm == "log"):
                        f_ = lf(10, labelOnlyBase=False)
                        b_ = sub.norm.inverse(
                            np.linspace(0, 1, sub.cmap.N + 1))
                        v_ = np.linspace(
                            sub.norm.vmin, sub.norm.vmax, sub.cmap.N)
Marco Selig's avatar
Marco Selig committed
832
833
834
835
                    else:
                        f_ = None
                        b_ = None
                        v_ = None
836
837
                    fig.colorbar(sub, ax=ax0, orientation="horizontal", fraction=0.1, pad=0.05, shrink=0.75, aspect=20, ticks=[
                                 vmin, vmax], format=f_, drawedges=False, boundaries=b_, values=v_)
Marco Selig's avatar
Marco Selig committed
838
839
                ax0.set_title(title)

840
841
842
        if(bool(kwargs.get("save", False))):
            fig.savefig(str(kwargs.get("save")), dpi=None, facecolor="none", edgecolor="none", orientation="portrait",
                        papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1)
Marco Selig's avatar
Marco Selig committed
843
844
845
846
            pl.close(fig)
        else:
            fig.canvas.draw()

847
848
849
850
851
852
853
854
    def getlm(self):  # > compute all (l,m)
        index = np.arange(self.get_dim())
        n = 2 * self.paradict['lmax'] + 1
        m = np.ceil(
            (n - np.sqrt(n**2 - 8 * (index - self.paradict['lmax']))) / 2
                    ).astype(np.int)
        l = index - self.paradict['lmax'] * m + m * (m - 1) // 2
        return l, m
Marco Selig's avatar
Marco Selig committed
855
856


857
class gl_space(point_space):
Marco Selig's avatar
Marco Selig committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
875
        dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
876
877
878
879
880
881
882
883
884
885
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
886
        `dtype` has to be either numpy.float64 or numpy.float32.
Marco Selig's avatar
Marco Selig committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
901
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
902
903
904
905
906
907
908
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """
909

Ultima's avatar
Ultima committed
910
    def __init__(self, nlat, nlon=None, dtype=np.dtype('float64'),
911
                 datamodel='np', comm=gc['default_comm']):
Marco Selig's avatar
Marco Selig committed
912
913
914
915
916
917
918
919
920
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
921
            dtype : numpy.dtype, *optional*
Marco Selig's avatar
Marco Selig committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
936
        # check imports
Ultima's avatar
Ultima committed
937
        if not gc['use_libsharp']:
938
            raise ImportError(about._errors.cstring(
Ultima's avatar
Ultima committed
939
                "ERROR: libsharp_wrapper_gl not loaded."))
940
941

        self.paradict = gl_space_paradict(nlat=nlat, nlon=nlon)
Marco Selig's avatar
Marco Selig committed
942

943
944
945
        # check data type
        dtype = np.dtype(dtype)
        if dtype not in [np.dtype('float32'), np.dtype('float64')]:
Marco Selig's avatar
Marco Selig committed
946
            about.warnings.cprint("WARNING: data type set to default.")
947
948
            dtype = np.dtype('float')
        self.dtype = dtype
949

950
        # set datamodel
951
952
953
954
        if datamodel not in ['np']:
            about.warnings.cprint("WARNING: datamodel set to default.")
            self.datamodel = 'np'
        else:
955
            self.datamodel = datamodel
Marco Selig's avatar
Marco Selig committed
956
957

        self.discrete = False
958
        self.harmonic = False
959
960
961
        self.distances = tuple(gl.vol(self.paradict['nlat'],
                                      nlon=self.paradict['nlon']
                                      ).astype(np.float))
962
        self.comm = self._parse_comm(comm)
963
964
965

    @property
    def para(self):
966
        temp = np.array([self.paradict['nlat'],
967
968
                         self.paradict['nlon']], dtype=int)
        return temp
969

970
971
972
973
    @para.setter
    def para(self, x):
        self.paradict['nlat'] = x[0]
        self.paradict['nlon'] = x[1]
974

975
    def copy(self):
976
977
978
979
        return gl_space(nlat=self.paradict['nlat'],
                        nlon=self.paradict['nlon'],
                        dtype=self.dtype)

980
    def get_shape(self):
981
982
983
        return (np.int((self.paradict['nlat'] * self.paradict['nlon'])),)

    def get_dof(self, split=False):
Marco Selig's avatar
Marco Selig committed
984
985
986
987
988
989
990
991
992
993
994
995
996
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.

            Notes
            -----
            Since the :py:class:`gl_space` class only supports real-valued
            fields, the number of degrees of freedom is the number of pixels.
        """
Ultima's avatar
Ultima committed
997
998
999
1000
        if split:
            return self.get_shape()
        else:
            return self.get_dim()
Marco Selig's avatar
Marco Selig committed
1001

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    def get_meta_volume(self, split=False):
        """
            Calculates the meta volumes.

            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions.

            Parameters
            ----------
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each field component (default: False).

            Returns
            -------
            mol : {numpy.ndarray, float}
                Meta volume of the field components or the complete space.

            Notes
            -----
            For Gauss-Legendre pixelizations, the meta volumes are the pixel
            sizes.
        """
        if not split:
            return np.float(4 * np.pi)
        else:
            mol = self.cast(1, dtype=np.float)
            return self.calc_weight(mol, power=1)

1033
    # TODO: Extend to binning/log
1034
1035
1036
1037
1038
    def enforce_power(self, spec, size=None, kindex=None):
        if kindex is None:
            kindex_size = self.paradict['nlat']
            kindex = np.arange(kindex_size,
                               dtype=np.array(self.distances).dtype)
1039
1040
1041
        return self._enforce_power_helper(spec=spec,
                                          size=size,
                                          kindex=kindex)
Marco Selig's avatar
Marco Selig committed
1042

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
    def check_codomain(self, codomain):
        """
            Checks whether a given codomain is compatible to the space or not.

            Parameters
            ----------
            codomain : nifty.space
                Space to be checked for compatibility.

            Returns
            -------
            check : bool
                Whether or not the given codomain is compatible to the space.

            Notes
            -----
            Compatible codomains are instances of :py:class:`gl_space` and
            :py:class:`lm_space`.
        """
        if codomain is None:
            return False

Ultima's avatar
Ultima committed
1065
1066
1067
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring("ERROR: invalid input."))

1068
1069
1070
        if self.datamodel is not codomain.datamodel:
            return False

1071
1072
1073
        if self.comm is not codomain.comm:
            return False

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        if isinstance(codomain, lm_space):
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']
            # nlon==2*lat-1
            # lmax==nlat-1
            # lmax==mmax
            if (nlon == 2*nlat-1) and (lmax == nlat-1) and (lmax == mmax):
                return True

        return False

    def get_codomain(self, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, i.e.\  an instance of the :py:class:`lm_space` class.

            Returns
            -------
            codomain : nifty.lm_space
                A compatible codomain.
        """
        nlat = self.paradict['nlat']
        lmax = nlat-1
        mmax = nlat-1
        # lmax,mmax = nlat-1,nlat-1
        if self.dtype == np.dtype('float32'):
1102
1103
1104
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex64,
                            datamodel=self.datamodel,
                            comm=self.comm)
1105
        else:
1106
1107
1108
            return lm_space(lmax=lmax, mmax=mmax, dtype=np.complex128,
                            datamodel=self.datamodel,
                            comm=self.comm)
1109

1110
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        """
            Generates random field values according to the specifications given
            by the parameters.

            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
            random : string, *optional*
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
Ultima's avatar
Ultima committed
1128
1129
                - "gau" (normal distribution with zero-mean and a given
                standard
Marco Selig's avatar
Marco Selig committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
                    deviation or variance)
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
Ultima's avatar
Ultima committed
1140
1141
            spec : {scalar, list, numpy.array, nifty.field, function},
            *optional*
Marco Selig's avatar
Marco Selig committed
1142
1143
1144
1145
1146
1147
1148
1149
                Power spectrum (default: 1).
            codomain : nifty.lm_space, *optional*
                A compatible codomain for power indexing (default: None).
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
        """
1150
        arg = random.parse_arguments(self, **kwargs)
1151

1152
1153
        if(arg is None):
            x = np.zeros(self.get_shape(), dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
1154

Ultima's avatar
Ultima committed
1155
        elif(arg['random'] == "pm1"):
1156
            x = random.pm1(dtype=self.dtype, shape=self.get_shape())
1157

Ultima's avatar
Ultima committed
1158
        elif(arg['random'] == "gau"):
1159
1160
            x = random.gau(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1161
1162
                           mean=arg['mean'],
                           std=arg['std'])
Marco Selig's avatar
Marco Selig committed
1163

Ultima's avatar
Ultima committed
1164
        elif(arg['random'] == "syn"):
1165
1166
1167
1168
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = nlat - 1
            if self.dtype == np.dtype('float32'):
Ultima's avatar
Ultima committed
1169
                x = gl.synfast_f(arg['spec'],
1170
1171
                                 nlat=nlat, nlon=nlon,
                                 lmax=lmax, mmax=lmax, alm=False)
Marco Selig's avatar
Marco Selig committed
1172
            else:
Ultima's avatar
Ultima committed
1173
                x = gl.synfast(arg['spec'],
1174
1175
1176
1177
1178
                               nlat=nlat, nlon=nlon,
                               lmax=lmax, mmax=lmax, alm=False)
            # weight if discrete
            if self.discrete:
                x = self.calc_weight(x, power=0.5)
Marco Selig's avatar
Marco Selig committed
1179

Ultima's avatar
Ultima committed
1180
        elif(arg['random'] == "uni"):
1181
1182
            x = random.uni(dtype=self.dtype,
                           shape=self.get_shape(),
Ultima's avatar
Ultima committed
1183
1184
                           vmin=arg['vmin'],
                           vmax=arg['vmax'])
Marco Selig's avatar
Marco Selig committed
1185
1186

        else:
1187
            raise KeyError(about._errors.cstring(
Ultima's avatar
Ultima committed
1188
                "ERROR: unsupported random key '" + str(arg['random']) + "'."))
Marco Selig's avatar
Marco Selig committed
1189

1190
        return x
Marco Selig's avatar
Marco Selig committed
1191

1192
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
        """
            Weights a given array with the pixel volumes to a given power.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).

            Returns
            -------
            y : numpy.ndarray
                Weighted array.
        """
1208
        x = self.cast(x)
1209
        # weight
1210
1211
1212
1213
1214
1215
1216
1217
        nlat = self.paradict['nlat']
        nlon = self.paradict['nlon']
        if self.dtype == np.dtype('float32'):
            return gl.weight_f(x,
                               np.array(self.distances),
                               p=np.float32(power),
                               nlat=nlat, nlon=nlon,
                               overwrite=False)
Marco Selig's avatar
Marco Selig committed
1218
        else:
1219
1220
1221
1222
1223
            return gl.weight(x,
                             np.array(self.distances),
                             p=np.float32(power),
                             nlat=nlat, nlon=nlon,
                             overwrite=False)
1224

1225
    def get_weight(self, power=1):
1226
        # TODO: Check if this function is compatible to the rest of nifty
1227
1228
1229
1230
        # TODO: Can this be done more efficiently?
        dummy = self.dtype(1)
        weighted_dummy = self.calc_weight(dummy, power=power)
        return weighted_dummy / dummy
Marco Selig's avatar
Marco Selig committed
1231

1232
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
1233
1234
1235
1236
1237
1238
1239
1240
        """
            Computes the transform of a given array of field values.

            Parameters
            ----------
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
1241
                codomain space to which the transformation shall map
Marco Selig's avatar
Marco Selig committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
                (default: self).

            Returns
            -------
            Tx : numpy.ndarray
                Transformed array

            Notes
            -----
            Only instances of the :py:class:`lm_space` or :py:class:`gl_space`
            classes are allowed as `codomain`.
        """
1254
        x = self.cast(x)
Marco Selig's avatar
Marco Selig committed
1255

1256
1257
1258
1259
        # Check if the given codomain is suitable for the transformation
        if not self.check_codomain(codomain):
            raise ValueError(about._errors.cstring(
                "ERROR: unsupported codomain."))
Marco Selig's avatar
Marco Selig committed
1260

1261
        if isinstance(codomain, lm_space):
1262
            # weight if discrete
1263
            if self.discrete:
1264
1265
                x = self.calc_weight(x, power=-0.5)
            # transform
1266
1267
1268
1269
1270
1271
1272
1273
1274
            nlat = self.paradict['nlat']
            nlon = self.paradict['nlon']
            lmax = codomain.paradict['lmax']
            mmax = codomain.paradict['mmax']

            if self.dtype == np.dtype('float32'):
                Tx = gl.map2alm_f(x,
                                  nlat=nlat, nlon=nlon,
                                  lmax=lmax, mmax=mmax)
Marco Selig's avatar
Marco Selig committed
1275
            else:
1276
1277