sugar.py 4.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
20
import numpy as np

21
22
from nifty import Space,\
                  PowerSpace,\
23
                  Field,\
24
                  ComposedOperator,\
25
                  DiagonalOperator,\
26
                  FFTOperator,\
27
28
29
                  sqrt,\
                  nifty_configuration

30
31
32
__all__ = ['create_power_operator',
           'generate_posterior_sample',
           'create_composed_fft_operator']
33
34


Jakob Knollmueller's avatar
Jakob Knollmueller committed
35
def create_power_operator(domain, power_spectrum, dtype=None,
36
                          distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
37
    """ Creates a diagonal operator with the given power spectrum.
38

39
    Constructs a diagonal operator that lives over the specified domain.
40

41
42
43
    Parameters
    ----------
    domain : DomainObject
44
        Domain over which the power operator shall live.
Theo Steininger's avatar
Theo Steininger committed
45
    power_spectrum : (array-like, method)
46
47
        An array-like object, or a method that implements the square root
        of a power spectrum as a function of k.
Theo Steininger's avatar
Theo Steininger committed
48
    dtype : type *optional*
49
        dtype that the field holding the power spectrum shall use
Theo Steininger's avatar
Theo Steininger committed
50
51
52
        (default : None).
        if dtype == None: the dtype of `power_spectrum` will be used.
    distribution_strategy : string *optional*
53
        Distributed strategy to be used by the underlying d2o objects.
Theo Steininger's avatar
Theo Steininger committed
54
55
        (default : 'not')

56
57
    Returns
    -------
Theo Steininger's avatar
Theo Steininger committed
58
    DiagonalOperator : An operator that implements the given power spectrum.
59

60
    """
61

62
63
64
65
    if distribution_strategy is None:
        distribution_strategy = \
            nifty_configuration['default_distribution_strategy']

Jakob Knollmueller's avatar
Jakob Knollmueller committed
66
67
    if isinstance(power_spectrum, Field):
        power_domain = power_spectrum.domain
68
    else:
Jakob Knollmueller's avatar
Jakob Knollmueller committed
69
        power_domain = PowerSpace(domain,
70
                                  distribution_strategy=distribution_strategy)
Jakob Knollmueller's avatar
Jakob Knollmueller committed
71

72
    fp = Field(power_domain, val=power_spectrum, dtype=dtype,
73
74
75
               distribution_strategy='not')
    f = fp.power_synthesize(mean=1, std=0, real_signal=False,
                            distribution_strategy=distribution_strategy)
76
77
78
79

    if not issubclass(fp.dtype.type, np.complexfloating):
        f = f.real

Jakob Knollmueller's avatar
Jakob Knollmueller committed
80
    f **= 2
81
    return DiagonalOperator(domain, diagonal=f, bare=True)
82

83

84
85
86
def generate_posterior_sample(mean, covariance):
    """ Generates a posterior sample from a Gaussian distribution with given
    mean and covariance
87

88
89
90
    This method generates samples by setting up the observation and
    reconstruction of a mock signal in order to obtain residuals of the right
    correlation which are added to the given mean.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    Parameters
    ----------
    mean : Field
        the mean of the posterior Gaussian distribution
    covariance : WienerFilterCurvature
        The posterior correlation structure consisting of a
        response operator, noise covariance and prior signal covariance

    Returns
    -------
    sample : Field
        Returns the a sample from the Gaussian of given mean and covariance.

    """

107
108
109
    S = covariance.S
    R = covariance.R
    N = covariance.N
110

Jakob Knollmueller's avatar
Jakob Knollmueller committed
111
    power = S.diagonal().power_analyze()**.5
112
113
    mock_signal = power.power_synthesize(real_signal=True)

114
    noise = N.diagonal(bare=True)
115

116
    mock_noise = Field.from_random(random_type="normal", domain=N.domain,
117
118
119
                                   dtype=noise.dtype)
    mock_noise *= sqrt(noise)

Jakob Knollmueller's avatar
Jakob Knollmueller committed
120
    mock_data = R(mock_signal) + mock_noise
121

Jakob Knollmueller's avatar
Jakob Knollmueller committed
122
    mock_j = R.adjoint_times(N.inverse_times(mock_data))
123
124
125
    mock_m = covariance.inverse_times(mock_j)
    sample = mock_signal - mock_m + mean
    return sample
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145


def create_composed_fft_operator(domain, codomain=None, all_to='other'):
    fft_op_list = []
    space_index_list = []

    if codomain is None:
        codomain = [None]*len(domain)
    for i in range(len(domain)):
        space = domain[i]
        cospace = codomain[i]
        if not isinstance(space, Space):
            continue
        if (all_to == 'other' or
                (all_to == 'position' and space.harmonic) or
                (all_to == 'harmonic' and not space.harmonic)):
            fft_op_list += [FFTOperator(domain=space, target=cospace)]
            space_index_list += [i]
    result = ComposedOperator(fft_op_list, default_spaces=space_index_list)
    return result