field.py 47.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20

21
import ast
22
import itertools
csongor's avatar
csongor committed
23
24
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
25
26
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
27

28
from d2o import distributed_data_object,\
29
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
30

31
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
32

33
from nifty.domain_object import DomainObject
34

35
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
36

csongor's avatar
csongor committed
37
import nifty.nifty_utilities as utilities
38
39
from nifty.random import Random

csongor's avatar
csongor committed
40

Jait Dixit's avatar
Jait Dixit committed
41
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
42
43
44
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
45
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
46
47
    In addition Field has methods to work with power-spectra.

48
49
50
51
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
52
        LMSpace or PowerSpace. It might also be a FieldArray, which is
53
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
54

55
56
57
58
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
59

60
61
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
62

63
64
65
66
67
68
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
69

70
71
72
73
74
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
75

76
77
78
79
80
81
82
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
83
84
        Name of the used distribution_strategy.

85
86
87
88
89
90
91
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
92

93
94
95
96
97
98
99
100
101
102
103
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
104

105
106
107
108
109
    See Also
    --------
    distributed_data_object

    """
110

Theo Steininger's avatar
Theo Steininger committed
111
    # ---Initialization methods---
112

113
    def __init__(self, domain=None, val=None, dtype=None,
114
                 distribution_strategy=None, copy=False):
115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

Theo Steininger's avatar
Theo Steininger committed
130

131
    def _parse_domain(self, domain, val=None):
132
        if domain is None:
133
134
135
136
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
137
        elif isinstance(domain, DomainObject):
138
            domain = (domain,)
139
140
141
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
142
        for d in domain:
143
            if not isinstance(d, DomainObject):
144
145
                raise TypeError(
                    "Given domain contains something that is not a "
146
                    "DomainObject instance.")
csongor's avatar
csongor committed
147
148
        return domain

Theo Steininger's avatar
Theo Steininger committed
149
150
151
152
153
154
155
156
157
158
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
159

160
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
161
        if dtype is None:
162
            try:
163
                dtype = val.dtype
164
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
165
166
167
                try:
                    if val is None:
                        raise TypeError
168
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
169
                except(TypeError):
170
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
171
        else:
172
            dtype = np.dtype(dtype)
173

174
175
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
176
        return dtype
177

178
179
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
180
            if isinstance(val, distributed_data_object):
181
                distribution_strategy = val.distribution_strategy
182
            elif isinstance(val, Field):
183
                distribution_strategy = val.distribution_strategy
184
            else:
185
                self.logger.debug("distribution_strategy set to default!")
186
                distribution_strategy = gc['default_distribution_strategy']
187
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
188
189
190
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
191
        return distribution_strategy
192
193

    # ---Factory methods---
194

195
    @classmethod
196
    def from_random(cls, random_type, domain=None, dtype=None,
197
                    distribution_strategy=None, **kwargs):
198
199
200
201
202
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
203

204
205
206
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
207

208
209
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
216

217
218
219
220
221
222
223
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
224
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
225

226
227

        """
Theo Steininger's avatar
Theo Steininger committed
228

229
        # create a initially empty field
230
        f = cls(domain=domain, dtype=dtype,
231
                distribution_strategy=distribution_strategy)
232
233
234
235
236
237
238

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
239
        # extract the distributed_data_object from f and apply the appropriate
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
266
        else:
267
268
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
269

270
        return random_arguments
csongor's avatar
csongor committed
271

272
273
    # ---Powerspectral methods---

Martin Reinecke's avatar
Martin Reinecke committed
274
    def power_analyze(self, spaces=None, logarithmic=None, nbin=None,
275
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
276
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
277

Theo Steininger's avatar
Theo Steininger committed
278
279
280
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
281
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
282
        field, corresponding to the square root of the power spectrum.
283
284
285

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
286
287
288
289
290
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
Martin Reinecke's avatar
Martin Reinecke committed
291
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
292
293
294
295
296
297
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
298
299
            Overrides nbin and logarithmic.
            if binbounds==None : bins are inferred.
300
301
302
303
304
305
306
307
308
309
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
310

311
312
313
314
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
315
316
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
317
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
318

319
320
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
321
        out : Field
322
323
324
325
326
327
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
328

329
        """
Theo Steininger's avatar
Theo Steininger committed
330

Theo Steininger's avatar
Theo Steininger committed
331
        # check if all spaces in `self.domain` are either harmonic or
332
333
334
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
335
                self.logger.info(
336
                    "Field has a space in `domain` which is neither "
337
338
339
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
340
341
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
342
            spaces = range(len(self.domain))
343
344

        if len(spaces) == 0:
345
346
            raise ValueError(
                "No space for analysis specified.")
347

348
349
350
351
352
353
354
355
356
357
358
359
360
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
361
362

        for space_index in spaces:
363
364
            parts = [self._single_power_analyze(
                                work_field=part,
365
366
367
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
368
369
                                binbounds=binbounds)
                     for part in parts]
370

371
372
373
374
375
376
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
377
378
379

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
380
                              binbounds):
381

382
        if not work_field.domain[space_index].harmonic:
383
384
            raise ValueError(
                "The analyzed space must be harmonic.")
385

386
387
388
389
390
391
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

392
        distribution_strategy = \
393
394
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
395

396
        harmonic_domain = work_field.domain[space_index]
397
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
398
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
399
400
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
401

402
403
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
Martin Reinecke's avatar
Martin Reinecke committed
404
                                pdomain=power_domain,
405
                                axes=work_field.domain_axes[space_index])
406
407

        # create the result field and put power_spectrum into it
408
        result_domain = list(work_field.domain)
409
        result_domain[space_index] = power_domain
410
        result_dtype = power_spectrum.dtype
411

412
        result_field = work_field.copy_empty(
413
                   domain=result_domain,
414
                   dtype=result_dtype,
415
                   distribution_strategy=power_spectrum.distribution_strategy)
416
417
418
419
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

420
    @classmethod
Martin Reinecke's avatar
Martin Reinecke committed
421
    def _calculate_power_spectrum(cls, field_val, pdomain, axes=None):
422

Martin Reinecke's avatar
Martin Reinecke committed
423
424
425
        pindex = pdomain.pindex
        # MR FIXME: how about iterating over slices, instead of replicating
        # pindex? Would save memory and probably isn't slower.
426
        if axes is not None:
427
428
429
430
431
432
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
433
                                         axis=axes)
Martin Reinecke's avatar
Martin Reinecke committed
434
        rho = pdomain.rho
435
436
437
438
439
440
441
442
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

443
444
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
445
446
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
447
            raise ValueError("pindex's distribution strategy must be "
448
449
450
451
452
453
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
454
                    "A slicing distributor shall not be reshaped to "
455
456
457
458
459
460
461
462
463
464
465
466
467
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

468
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
469
                         mean=None, std=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
470
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
471

Theo Steininger's avatar
Theo Steininger committed
472
473
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
474

475
476
477
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
478
479
480
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
481
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
482
483
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
484
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
485
486
487
488
489
490
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
491
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
492
493
494
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
495

496
497
498
499
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
500
            stored in the `spaces` in `self`.
501

Theo Steininger's avatar
Theo Steininger committed
502
503
504
505
506
507
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

508
509
510
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
511
512
513
514
515

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

516
        """
Theo Steininger's avatar
Theo Steininger committed
517

518
519
520
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
521
522
523
        if spaces is None:
            spaces = range(len(self.domain))

524
525
526
527
528
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
529
530
531

        # create the result domain
        result_domain = list(self.domain)
532
533
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
534
            harmonic_domain = power_space.harmonic_partner
535
            result_domain[power_space_index] = harmonic_domain
536
537
538

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
539
        if real_power:
540
            result_list = [None]
541
542
        else:
            result_list = [None, None]
543

544
545
546
        if distribution_strategy is None:
            distribution_strategy = gc['default_distribution_strategy']

547
548
        result_list = [self.__class__.from_random(
                             'normal',
549
550
551
                             mean=mean,
                             std=std,
                             domain=result_domain,
552
                             dtype=np.complex,
553
                             distribution_strategy=distribution_strategy)
554
555
556
557
558
559
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
560
561

        spec = self.val.get_full_data()
562
563
        spec = np.sqrt(spec)

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

580
        if real_signal:
581
            result_val_list = [self._hermitian_decomposition(
582
583
584
585
586
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
587
                               for result_val in result_val_list]
588
589
590
591
592
593
594

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
595
        else:
596
597
598
599
            result = result_list[0] + 1j*result_list[1]

        return result

600
    @staticmethod
601
602
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
603
604
605
606
607
608
609
610
611

        flipped_val = val
        for space in spaces:
            flipped_val = domain[space].hermitianize_inverter(
                                                    x=flipped_val,
                                                    axes=domain_axes[space])
        flipped_val = flipped_val.conjugate()
        h = (val + flipped_val)/2.
        a = val - h
612
613

        # correct variance
614
        if preserve_gaussian_variance:
Martin Reinecke's avatar
Martin Reinecke committed
615
616
            assert issubclass(val.dtype.type, np.complexfloating),\
                    "complex input field is needed here"
617
618
619
            h *= np.sqrt(2)
            a *= np.sqrt(2)

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
#            The code below should not be needed in practice, since it would
#            only ever be called when hermitianizing a purely real field.
#            However it might be of educational use and keep us from forgetting
#            how these things are done ...

#            if not issubclass(val.dtype.type, np.complexfloating):
#                # in principle one must not correct the variance for the fixed
#                # points of the hermitianization. However, for a complex field
#                # the input field loses half of its power at its fixed points
#                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
#                # also necessary!
#                # => The hermitianization can be done on a space level since
#                # either nothing must be done (LMSpace) or ALL points need a
#                # factor of sqrt(2)
#                # => use the preserve_gaussian_variance flag in the
#                # hermitian_decomposition method above.
#
#                # This code is for educational purposes:
#                fixed_points = [domain[i].hermitian_fixed_points()
#                                for i in spaces]
#                fixed_points = [[fp] if fp is None else fp
#                                for fp in fixed_points]
#
#                for product_point in itertools.product(*fixed_points):
#                    slice_object = np.array((slice(None), )*len(val.shape),
#                                            dtype=np.object)
#                    for i, sp in enumerate(spaces):
#                        point_component = product_point[i]
#                        if point_component is None:
#                            point_component = slice(None)
#                        slice_object[list(domain_axes[sp])] = point_component
#
#                    slice_object = tuple(slice_object)
#                    h[slice_object] /= np.sqrt(2)
#                    a[slice_object] /= np.sqrt(2)

656
657
        return (h, a)

658
659
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
660
661
662

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
663
        pindex = power_space.pindex
664
665
666
667
668
669
670
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
671
            raise AttributeError(
Martin Reinecke's avatar
Martin Reinecke committed
672
                "The distribution_strategy of pindex does not fit the "
673
674
675
676
677
678
679
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

680
681
682
683
684
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
685
        # here, the power_spectrum is distributed into the new shape
686
687
        local_rescaler = spec[local_blow_up]
        return local_rescaler
688

Theo Steininger's avatar
Theo Steininger committed
689
    # ---Properties---
690

Theo Steininger's avatar
Theo Steininger committed
691
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
692
        """ Sets the fields distributed_data_object.
693
694
695

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
696
        new_val : scalar, array-like, Field, None *optional*
697
698
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
699

700
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
701
702
            If False, Field tries to not copy the input data but use it
            directly.
703
704
705
706
707
708
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
709

710
711
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
712
713
            new_val = new_val.copy()
        self._val = new_val
714
        return self
csongor's avatar
csongor committed
715

716
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
717
        """ Returns the distributed_data_object associated with this Field.
718
719
720
721

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
722
723
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
724

725
726
727
728
729
730
731
732
733
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
734

735
736
737
        if self._val is None:
            self.set_val(None)

738
        if copy:
Theo Steininger's avatar
Theo Steininger committed
739
            return self._val.copy()
740
        else:
Theo Steininger's avatar
Theo Steininger committed
741
            return self._val
csongor's avatar
csongor committed
742

Theo Steininger's avatar
Theo Steininger committed
743
744
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
745
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
746

747
748
749
750
751
752
753
754
755
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
756

757
        return self.get_val(copy=False)
csongor's avatar
csongor committed
758

Theo Steininger's avatar
Theo Steininger committed
759
760
    @val.setter
    def val(self, new_val):
761
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
762

763
764
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
765
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
766

767
768
769
        Returns
        -------
        out : tuple
Martin Reinecke's avatar
Martin Reinecke committed
770
            The output object. The tuple contains the dimensions of the spaces
771
772
773
774
775
776
777
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
778
779
780
781
782
783
784
785
        if not hasattr(self, '_shape'):
            shape_tuple = tuple(sp.shape for sp in self.domain)
            try:
                global_shape = reduce(lambda x, y: x + y, shape_tuple)
            except TypeError:
                global_shape = ()
            self._shape = global_shape
        return self._shape
csongor's avatar
csongor committed
786

787
788
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
789
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
790

Theo Steininger's avatar
Theo Steininger committed
791
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
792

793
794
795
796
797
798
799
800
801
802
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
803

804
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
805
806
807
808
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
809

810
811
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
812
813
814
815
816
817
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
818
819
820
821
822
823
824
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
825
826
827
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
828
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
829
        try:
Theo Steininger's avatar
Theo Steininger committed
830
            return reduce(lambda x, y: x * y, volume_tuple)
831
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
832
            return 0.
833

Theo Steininger's avatar
Theo Steininger committed
834
    # ---Special unary/binary operations---
835

csongor's avatar
csongor committed
836
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
837
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
838

839
840
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
841
        x : scalar, d2o, Field, array_like
842
843
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
844

845
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
846
847
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
848

849
850
851
852
853
854
855
856
857
858
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
859
860
        if dtype is None:
            dtype = self.dtype
861
862
        else:
            dtype = np.dtype(dtype)
863

864
865
        casted_x = x

866
        for ind, sp in enumerate(self.domain):
867
            casted_x = sp.pre_cast(casted_x,
868
869
870
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
871
872

        for ind, sp in enumerate(self.domain):
873
874
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
875

876
        return casted_x
csongor's avatar
csongor committed
877

Theo Steininger's avatar
Theo Steininger committed
878
    def _actual_cast(self, x, dtype=None):
879
        if isinstance(x, Field):
csongor's avatar
csongor committed
880
881
882
883
884
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

885
        return_x = distributed_data_object(
886
887
888
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
889
890
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
891

892
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
893
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
894

895
896
897
898
899
900
901
902
903
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
904

905
906
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
907

908
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
909
910
            The new distribution strategy the Field shall have.

911
912
913
914
915
916
917
918
919
920
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
921

Theo Steininger's avatar
Theo Steininger committed
922
        copied_val = self.get_val(copy=True)
923
924
925
926
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
927
928
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
929

930
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
931
932
933
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
934
935
936
937
938
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
939

940
941
942
943
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
944

945
946
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
947

Theo Steininger's avatar
Theo Steininger committed
948
        distribution_strategy : string, all supported distribution strategies
949
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
950

951
952
953
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
954
            The output object.
955
956
957
958
959
960

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
961

Theo Steininger's avatar
Theo Steininger committed
962
963
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
964
        else:
Theo Steininger's avatar
Theo Steininger committed
965
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
966

Theo Steininger's avatar
Theo Steininger committed
967
968
969
970
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
971

972
973
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
974

Theo Steininger's avatar
Theo Steininger committed
975
976
977
978
979
980
981
982
983
984
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
985
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
986
987
988
989
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
990
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
991
        return new_field
csongor's avatar
csongor committed
992

Theo Steininger's avatar
Theo Steininger committed
993
994
995
996
997
998
999
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
1000
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
1001
1002
1003
1004
1005
1006
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
1007
        """ Weights the pixels of `self` with their invidual pixel-volume.
1008
1009
1010
1011

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1012
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1013

1014
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1015
1016
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1017

Theo Steininger's avatar
Theo Steininger committed
1018
1019
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1020

1021
1022
1023
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1024
            The weighted field.
1025
1026

        """
1027
        if inplace:
csongor's avatar
csongor committed
1028
1029
1030
1031
            new_field = self
        else:
            new_field = self.copy_empty()

1032
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1033

1034
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1035
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
1036
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
1037

1038
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1039
1040
1041
1042
1043
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1044
1045

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1046
1047
        return new_field

Martin Reinecke's avatar
Martin Reinecke committed
1048
    def vdot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
1049
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
1050

1051
1052
1053
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
1054
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
1055

Theo Steininger's avatar
Theo Steininger committed
1056
1057
1058
        spaces : tuple of ints
            If the domain of `self` and `x` are not the same, `spaces` specfies
            the mapping.