rg_space.py 6.97 KB
Newer Older
1
2
3
4
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
5
#
6
7
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
8
9
10
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
11
# You should have received a copy of the GNU General Public License
12
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Marco Selig's avatar
Marco Selig committed
18

19
20
from __future__ import absolute_import, division, print_function
from ..compat import *
Marco Selig's avatar
Marco Selig committed
21
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
22
from .structured_domain import StructuredDomain
23
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
24
from .. import dobj
csongor's avatar
csongor committed
25

Marco Selig's avatar
Marco Selig committed
26

Martin Reinecke's avatar
Martin Reinecke committed
27
28
class RGSpace(StructuredDomain):
    """NIFTy subclass for regular Cartesian grids.
Martin Reinecke's avatar
Martin Reinecke committed
29
30
31

    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
32
    shape : int or tuple of int
Martin Reinecke's avatar
Martin Reinecke committed
33
        Number of grid points or numbers of gridpoints along each axis.
Martin Reinecke's avatar
Martin Reinecke committed
34
    distances : None or float or tuple of float, optional
Martin Reinecke's avatar
Martin Reinecke committed
35
36
        Distance between two grid points along each axis
        (default: None).
Martin Reinecke's avatar
Martin Reinecke committed
37
38
39
40
41
42
43
44

        If distances is None:

          - if harmonic==True, all distances will be set to 1

          - if harmonic==False, the distance along each axis will be
            set to the inverse of the number of points along that axis.

Martin Reinecke's avatar
Martin Reinecke committed
45
    harmonic : bool, optional
46
        Whether the space represents a grid in position or harmonic space.
Martin Reinecke's avatar
Martin Reinecke committed
47
        (default: False).
Marco Selig's avatar
Marco Selig committed
48
    """
Martin Reinecke's avatar
Martin Reinecke committed
49
    _needed_for_hash = ["_distances", "_shape", "_harmonic"]
50

Martin Reinecke's avatar
Martin Reinecke committed
51
    def __init__(self, shape, distances=None, harmonic=False):
Martin Reinecke's avatar
Martin Reinecke committed
52
        super(RGSpace, self).__init__()
53

Martin Reinecke's avatar
Martin Reinecke committed
54
        self._harmonic = bool(harmonic)
Martin Reinecke's avatar
Martin Reinecke committed
55
56
57
        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
58
59
60
61
62
63
64
65
66
67
68
69
70

        if distances is None:
            if self.harmonic:
                self._distances = (1.,) * len(self._shape)
            else:
                self._distances = tuple(1./s for s in self._shape)
        elif np.isscalar(distances):
            self._distances = (float(distances),) * len(self._shape)
        else:
            temp = np.empty(len(self.shape), dtype=np.float64)
            temp[:] = distances
            self._distances = tuple(temp)

71
        self._dvol = float(reduce(lambda x, y: x*y, self._distances))
Martin Reinecke's avatar
Martin Reinecke committed
72
        self._size = int(reduce(lambda x, y: x*y, self._shape))
Marco Selig's avatar
Marco Selig committed
73

74
    def __repr__(self):
Martin Reinecke's avatar
Martin Reinecke committed
75
76
        return ("RGSpace(shape=%r, distances=%r, harmonic=%r)"
                % (self.shape, self.distances, self.harmonic))
77

78
79
80
81
82
83
84
85
86
    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
Martin Reinecke's avatar
Martin Reinecke committed
87
88
    def size(self):
        return self._size
89

Martin Reinecke's avatar
Martin Reinecke committed
90
    @property
91
92
    def scalar_dvol(self):
        return self._dvol
93

94
    def get_k_length_array(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
95
96
        if (not self.harmonic):
            raise NotImplementedError
97
98
        ibegin = dobj.ibegin_from_shape(self._shape)
        res = np.arange(self.local_shape[0], dtype=np.float64) + ibegin[0]
Martin Reinecke's avatar
Martin Reinecke committed
99
100
        res = np.minimum(res, self.shape[0]-res)*self.distances[0]
        if len(self.shape) == 1:
101
            return Field.from_local_data(self, res)
Martin Reinecke's avatar
Martin Reinecke committed
102
103
        res *= res
        for i in range(1, len(self.shape)):
104
            tmp = np.arange(self.local_shape[i], dtype=np.float64) + ibegin[i]
Martin Reinecke's avatar
Martin Reinecke committed
105
106
107
            tmp = np.minimum(tmp, self.shape[i]-tmp)*self.distances[i]
            tmp *= tmp
            res = np.add.outer(res, tmp)
108
        return Field.from_local_data(self, np.sqrt(res))
theos's avatar
theos committed
109

110
    def get_unique_k_lengths(self):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
111
112
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        dimensions = len(self.shape)
        if dimensions == 1:  # extra easy
            maxdist = self.shape[0]//2
            return np.arange(maxdist+1, dtype=np.float64) * self.distances[0]
        if np.all(self.distances == self.distances[0]):  # shortcut
            maxdist = np.asarray(self.shape)//2
            tmp = np.sum(maxdist*maxdist)
            tmp = np.zeros(tmp+1, dtype=np.bool)
            t2 = np.arange(maxdist[0]+1, dtype=np.int64)
            t2 *= t2
            for i in range(1, dimensions):
                t3 = np.arange(maxdist[i]+1, dtype=np.int64)
                t3 *= t3
                t2 = np.add.outer(t2, t3)
            tmp[t2] = True
            return np.sqrt(np.nonzero(tmp)[0])*self.distances[0]
        else:  # do it the hard way
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
130
            # FIXME: this needs to improve for MPI. Maybe unique()/gather()?
Martin Reinecke's avatar
Martin Reinecke committed
131
            tmp = self.get_k_length_array().to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
132
            tmp = np.unique(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
133
134
135
136
137
138
139
            tol = 1e-12*tmp[-1]
            # remove all points that are closer than tol to their right
            # neighbors.
            # I'm appending the last value*2 to the array to treat the
            # rightmost point correctly.
            return tmp[np.diff(np.r_[tmp, 2*tmp[-1]]) > tol]

Martin Reinecke's avatar
Martin Reinecke committed
140
141
    @staticmethod
    def _kernel(x, sigma):
142
        from ..sugar import exp
143
        return exp(x*x * (-2.*np.pi*np.pi*sigma*sigma))
Martin Reinecke's avatar
Martin Reinecke committed
144

145
    def get_fft_smoothing_kernel_function(self, sigma):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
146
147
        if (not self.harmonic):
            raise NotImplementedError
Martin Reinecke's avatar
Martin Reinecke committed
148
        return lambda x: self._kernel(x, sigma)
theos's avatar
theos committed
149

Martin Reinecke's avatar
Martin Reinecke committed
150
    def get_default_codomain(self):
Martin Reinecke's avatar
Martin Reinecke committed
151
152
153
154
155
156
157
158
        """Returns a :class:`RGSpace` object representing the (position or
        harmonic) partner domain of `self`, depending on `self.harmonic`.

        Returns
        -------
        RGSpace
            The parter domain
        """
Martin Reinecke's avatar
Martin Reinecke committed
159
160
161
162
        distances = 1. / (np.array(self.shape)*np.array(self.distances))
        return RGSpace(self.shape, distances, not self.harmonic)

    def check_codomain(self, codomain):
Martin Reinecke's avatar
Martin Reinecke committed
163
164
165
        """Raises `TypeError` if `codomain` is not a matching partner domain
        for `self`.
        """
Martin Reinecke's avatar
Martin Reinecke committed
166
167
168
169
170
171
172
173
174
175
176
177
        if not isinstance(codomain, RGSpace):
            raise TypeError("domain is not a RGSpace")

        if self.shape != codomain.shape:
            raise AttributeError("The shapes of domain and codomain must be "
                                 "identical.")

        if self.harmonic == codomain.harmonic:
            raise AttributeError("domain.harmonic and codomain.harmonic must "
                                 "not be the same.")

        # Check if the distances match, i.e. dist' = 1 / (num * dist)
178
179
180
        if not np.all(abs(np.array(self.shape) *
                          np.array(self.distances) *
                          np.array(codomain.distances)-1) < 1e-7):
Martin Reinecke's avatar
Martin Reinecke committed
181
182
183
            raise AttributeError("The grid-distances of domain and codomain "
                                 "do not match.")

184
185
    @property
    def distances(self):
Martin Reinecke's avatar
Martin Reinecke committed
186
187
188
        """tuple of float : Distance between grid points along each axis.
        The n-th entry of the tuple is the distance between neighboring
        grid points along the n-th dimension.
189
        """
190
        return self._distances