test_minimizers.py 8.28 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

from unittest import SkipTest

import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_equal

import nifty5 as ift

pmp = pytest.mark.parametrize
IC = ift.GradientNormController(tol_abs_gradnorm=1e-5, iteration_limit=1000)

spaces = [ift.RGSpace([1024], distances=0.123), ift.HPSpace(32)]

minimizers = [
    'ift.VL_BFGS(IC)',
    'ift.NonlinearCG(IC, "Polak-Ribiere")',
    # 'ift.NonlinearCG(IC, "Hestenes-Stiefel"),
    'ift.NonlinearCG(IC, "Fletcher-Reeves")',
    'ift.NonlinearCG(IC, "5.49")',
    'ift.L_BFGS_B(ftol=1e-10, gtol=1e-5, maxiter=1000)',
    'ift.L_BFGS(IC)',
    'ift.NewtonCG(IC)'
]

newton_minimizers = ['ift.RelaxedNewton(IC)']
quadratic_only_minimizers = [
Martin Reinecke's avatar
Martin Reinecke committed
44
45
    'ift.ConjugateGradient(IC)',
    'ift.minimization.scipy_minimizer._ScipyCG(tol=1e-5, maxiter=300)'
Philipp Arras's avatar
Philipp Arras committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
]
slow_minimizers = ['ift.SteepestDescent(IC)']


@pmp('minimizer', minimizers + newton_minimizers + quadratic_only_minimizers +
     slow_minimizers)
@pmp('space', spaces)
def test_quadratic_minimization(minimizer, space):
    np.random.seed(42)
    starting_point = ift.Field.from_random('normal', domain=space)*10
    covariance_diagonal = ift.Field.from_random('uniform', domain=space) + 0.5
    covariance = ift.DiagonalOperator(covariance_diagonal)
    required_result = ift.full(space, 1.)

    try:
        minimizer = eval(minimizer)
        energy = ift.QuadraticEnergy(
            A=covariance, b=required_result, position=starting_point)

        (energy, convergence) = minimizer(energy)
    except NotImplementedError:
        raise SkipTest

    assert_equal(convergence, IC.CONVERGED)
    assert_allclose(
        energy.position.local_data,
        1./covariance_diagonal.local_data,
        rtol=1e-3,
        atol=1e-3)

Martin Reinecke's avatar
Martin Reinecke committed
76

77
78
79
80
81
82
83
84
85
86
87
88
@pmp('space', spaces)
def test_WF_curvature(space):
    np.random.seed(42)
    required_result = ift.full(space, 1.)

    s = ift.Field.from_random('uniform', domain=space) + 0.5
    S = ift.DiagonalOperator(s)
    r = ift.Field.from_random('uniform', domain=space)
    R = ift.DiagonalOperator(r)
    n = ift.Field.from_random('uniform', domain=space) + 0.5
    N = ift.DiagonalOperator(n)
    all_diag = 1./s + r**2/n
Martin Reinecke's avatar
Martin Reinecke committed
89
90
    curv = ift.WienerFilterCurvature(R, N, S, iteration_controller=IC,
                                     iteration_controller_sampling=IC)
91
92
93
94
95
96
97
98
99
    m = curv.inverse(required_result)
    assert_allclose(
        m.local_data,
        1./all_diag.local_data,
        rtol=1e-3,
        atol=1e-3)
    curv.draw_sample()
    curv.draw_sample(from_inverse=True)

100
101
102
103
104
    if len(space.shape) == 1:
        R = ift.ValueInserter(space, [0])
        n = ift.from_random('uniform', R.domain) + 0.5
        N = ift.DiagonalOperator(n)
        all_diag = 1./s + R(1/n)
Martin Reinecke's avatar
Martin Reinecke committed
105
106
107
        curv = ift.WienerFilterCurvature(R.adjoint, N, S,
                                         iteration_controller=IC,
                                         iteration_controller_sampling=IC)
108
109
110
111
112
113
114
115
116
117
        m = curv.inverse(required_result)
        assert_allclose(
            m.local_data,
            1./all_diag.local_data,
            rtol=1e-3,
            atol=1e-3)
        curv.draw_sample()
        curv.draw_sample(from_inverse=True)


Philipp Arras's avatar
Philipp Arras committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
@pmp('minimizer', minimizers + newton_minimizers)
def test_rosenbrock(minimizer):
    try:
        from scipy.optimize import rosen, rosen_der, rosen_hess_prod
    except ImportError:
        raise SkipTest
    np.random.seed(42)
    space = ift.DomainTuple.make(ift.UnstructuredDomain((2,)))
    starting_point = ift.Field.from_random('normal', domain=space)*10

    class RBEnergy(ift.Energy):
        def __init__(self, position):
            super(RBEnergy, self).__init__(position)

        @property
        def value(self):
            return rosen(self._position.to_global_data_rw())

        @property
        def gradient(self):
            inp = self._position.to_global_data_rw()
            out = ift.Field.from_global_data(space, rosen_der(inp))
            return out

        @property
        def metric(self):
            class RBCurv(ift.EndomorphicOperator):
                def __init__(self, loc):
                    self._loc = loc.to_global_data_rw()
                    self._capability = self.TIMES
                    self._domain = space

                def apply(self, x, mode):
                    self._check_input(x, mode)
                    inp = x.to_global_data_rw()
                    out = ift.Field.from_global_data(
                        space, rosen_hess_prod(self._loc.copy(), inp))
                    return out

            t1 = ift.GradientNormController(
                tol_abs_gradnorm=1e-5, iteration_limit=1000)
            return ift.InversionEnabler(RBCurv(self._position), t1)

        def apply_metric(self, x):
            inp = x.to_global_data_rw()
            pos = self._position.to_global_data_rw()
            return ift.Field.from_global_data(space, rosen_hess_prod(pos, inp))

    try:
        minimizer = eval(minimizer)
        energy = RBEnergy(position=starting_point)

        (energy, convergence) = minimizer(energy)
    except NotImplementedError:
        raise SkipTest

    assert_equal(convergence, IC.CONVERGED)
    assert_allclose(energy.position.local_data, 1., rtol=1e-3, atol=1e-3)


@pmp('minimizer', minimizers + slow_minimizers)
def test_gauss(minimizer):
    space = ift.UnstructuredDomain((1,))
    starting_point = ift.Field.full(space, 3.)

    class ExpEnergy(ift.Energy):
        def __init__(self, position):
            super(ExpEnergy, self).__init__(position)

        @property
        def value(self):
            x = self.position.to_global_data()[0]
            return -np.exp(-(x**2))

        @property
        def gradient(self):
            x = self.position.to_global_data()[0]
            return ift.Field.full(self.position.domain, 2*x*np.exp(-(x**2)))

        def apply_metric(self, x):
            p = self.position.to_global_data()[0]
            v = (2 - 4*p*p)*np.exp(-p**2)
            return ift.DiagonalOperator(
                ift.Field.full(self.position.domain, v))(x)

    try:
        minimizer = eval(minimizer)
        energy = ExpEnergy(position=starting_point)

        (energy, convergence) = minimizer(energy)
    except NotImplementedError:
        raise SkipTest

    assert_equal(convergence, IC.CONVERGED)
    assert_allclose(energy.position.local_data, 0., atol=1e-3)


@pmp('minimizer', minimizers + newton_minimizers + slow_minimizers)
def test_cosh(minimizer):
    space = ift.UnstructuredDomain((1,))
    starting_point = ift.Field.full(space, 3.)

    class CoshEnergy(ift.Energy):
        def __init__(self, position):
            super(CoshEnergy, self).__init__(position)

        @property
        def value(self):
            x = self.position.to_global_data()[0]
            return np.cosh(x)

        @property
        def gradient(self):
            x = self.position.to_global_data()[0]
            return ift.Field.full(self.position.domain, np.sinh(x))

        @property
        def metric(self):
            x = self.position.to_global_data()[0]
            v = np.cosh(x)
            return ift.DiagonalOperator(
                ift.Field.full(self.position.domain, v))

        def apply_metric(self, x):
            p = self.position.to_global_data()[0]
            v = np.cosh(p)
            return ift.DiagonalOperator(
                ift.Field.full(self.position.domain, v))(x)

    try:
        minimizer = eval(minimizer)
        energy = CoshEnergy(position=starting_point)

        (energy, convergence) = minimizer(energy)
    except NotImplementedError:
        raise SkipTest

    assert_equal(convergence, IC.CONVERGED)
    assert_allclose(energy.position.local_data, 0., atol=1e-3)