space.py 8.97 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2013 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143

"""
from __future__ import division
144
145
146

import abc

Marco Selig's avatar
Marco Selig committed
147
148
import numpy as np

149
from keepers import Loggable
Ultimanet's avatar
Ultimanet committed
150

151
152

class Space(object, Loggable):
Marco Selig's avatar
Marco Selig committed
153
    """
Ultimanet's avatar
Ultimanet committed
154
155
156
157
158
159
160
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
161

Ultimanet's avatar
Ultimanet committed
162
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
163

Ultimanet's avatar
Ultimanet committed
164
165
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
166
167
168

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
169
170
        num : int
            Number of points.
171
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
172
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
173

Ultimanet's avatar
Ultimanet committed
174
        Attributes
Marco Selig's avatar
Marco Selig committed
175
        ----------
Ultimanet's avatar
Ultimanet committed
176
177
        para : numpy.ndarray
            Array containing the number of points.
178
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
179
180
181
182
183
184
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
185
    """
186

187
188
189
    __metaclass__ = abc.ABCMeta

    def __init__(self, dtype=np.dtype('float')):
Ultimanet's avatar
Ultimanet committed
190
191
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
192

Ultimanet's avatar
Ultimanet committed
193
194
195
196
            Parameters
            ----------
            num : int
                Number of points.
197
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
198
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
199

Ultimanet's avatar
Ultimanet committed
200
201
202
203
            Returns
            -------
            None.
        """
204

205
        # parse dtype
206
        self.dtype = np.dtype(dtype)
207

208
        self._ignore_for_hash = []
209

Ultima's avatar
Ultima committed
210
211
212
213
    def __hash__(self):
        # Extract the identifying parts from the vars(self) dict.
        result_hash = 0
        for (key, item) in vars(self).items():
214
            if key in self._ignore_for_hash or key == '_ignore_for_hash':
Ultima's avatar
Ultima committed
215
                continue
theos's avatar
theos committed
216
            result_hash ^= item.__hash__() ^ int(hash(key)/117)
Ultima's avatar
Ultima committed
217
218
        return result_hash

theos's avatar
theos committed
219
220
221
222
223
    def __eq__(self, x):
        if isinstance(x, type(self)):
            return hash(self) == hash(x)
        else:
            return False
224

theos's avatar
theos committed
225
226
227
    def __ne__(self, x):
        return not self.__eq__(x)

228
229
230
    @abc.abstractproperty
    def harmonic(self):
        raise NotImplementedError
231

232
    @abc.abstractproperty
233
    def shape(self):
234
235
        raise NotImplementedError(
            "There is no generic shape for the Space base class.")
Marco Selig's avatar
Marco Selig committed
236

237
    @abc.abstractproperty
238
    def dim(self):
239
240
        raise NotImplementedError(
            "There is no generic dim for the Space base class.")
Marco Selig's avatar
Marco Selig committed
241

242
    @abc.abstractproperty
243
    def total_volume(self):
244
245
        raise NotImplementedError(
            "There is no generic volume for the Space base class.")
246

247
248
249
    @abc.abstractmethod
    def copy(self):
        return self.__class__(dtype=self.dtype)
250

251
    @abc.abstractmethod
252
    def weight(self, x, power=1, axes=None, inplace=False):
Marco Selig's avatar
Marco Selig committed
253
        """
Ultimanet's avatar
Ultimanet committed
254
255
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
256
257
258

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
259
260
261
262
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
263
264

            Returns
Ultimanet's avatar
Ultimanet committed
265
266
267
            -------
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
268
        """
269
        raise NotImplementedError
Ultima's avatar
Ultima committed
270

271
272
273
274
    def pre_cast(self, x, axes=None):
        return x

    def post_cast(self, x, axes=None):
275
276
        return x

277
    def get_distance_array(self, distribution_strategy):
278
        raise NotImplementedError(
279
280
281
282
283
            "There is no generic distance structure for Space base class.")

    def get_smoothing_kernel_function(self, sigma):
        raise NotImplementedError(
            "There is no generic co-smoothing kernel for Space base class.")
284

285
286
287
    def hermitian_decomposition(self, x, axes=None):
        raise NotImplementedError

288
    def __repr__(self):
Ultima's avatar
Ultima committed
289
290
        string = ""
        string += str(type(self)) + "\n"
291
        string += "dtype: " + str(self.dtype) + "\n"
Ultima's avatar
Ultima committed
292
        return string