lm_space.py 5.53 KB
Newer Older
csongor's avatar
csongor committed
1 2 3 4
from __future__ import division

import numpy as np

5
from nifty.spaces.space import Space
theos's avatar
theos committed
6

7
from nifty.config import nifty_configuration as gc,\
csongor's avatar
csongor committed
8
                         dependency_injector as gdi
theos's avatar
theos committed
9

Jait Dixit's avatar
Jait Dixit committed
10 11 12 13
from lm_helper import _distance_array_helper

from d2o import arange

csongor's avatar
csongor committed
14 15 16 17
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')


18
class LMSpace(Space):
csongor's avatar
csongor committed
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
        dtype : numpy.dtype, *optional*
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
        dtype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """

77
    def __init__(self, lmax, dtype=np.dtype('complex128')):
csongor's avatar
csongor committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
            dtype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """

        # check imports
        if not gc['use_libsharp'] and not gc['use_healpy']:
108 109
            raise ImportError(
                "neither libsharp_wrapper_gl nor healpy activated.")
csongor's avatar
csongor committed
110

csongor's avatar
csongor committed
111 112
        super(LMSpace, self).__init__(dtype)
        self._lmax = self._parse_lmax(lmax)
csongor's avatar
csongor committed
113

114
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
115 116 117 118

    @property
    def harmonic(self):
        return True
csongor's avatar
csongor committed
119 120

    @property
121 122
    def shape(self):
        return (self.dim, )
csongor's avatar
csongor committed
123 124

    @property
125 126 127
    def dim(self):
        l = self.lmax
        m = self.mmax
theos's avatar
theos committed
128 129 130 131
        # the LMSpace consist of the full triangle (including -m's!),
        # minus two little triangles if mmax < lmax
        # dim = (((2*(l+1)-1)+1)**2/4 - 2 * (l-m)(l-m+1)/2
        return np.int((l+1)**2 - (l-m)*(l-m+1.))
csongor's avatar
csongor committed
132

133 134 135 136
    @property
    def total_volume(self):
        # the individual pixels have a fixed volume of 1.
        return np.float(self.dim)
csongor's avatar
csongor committed
137

138 139 140 141
    def copy(self):
        return self.__class__(lmax=self.lmax,
                              mmax=self.mmax,
                              dtype=self.dtype)
csongor's avatar
csongor committed
142

143 144 145
    def weight(self, x, power=1, axes=None, inplace=False):
        if inplace:
            return x
csongor's avatar
csongor committed
146
        else:
147
            return x.copy()
csongor's avatar
csongor committed
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def get_distance_array(self, distribution_strategy):
        dists = arange(start=0, stop=self.shape[0],
                       distribution_strategy=distribution_strategy)

        dists = dists.apply_scalar_function(
            lambda x: _distance_array_helper(x, self.lmax),
            dtype=np.float)

        return dists

    def get_smoothing_kernel_function(self, sigma):
        if sigma is None:
            sigma = np.sqrt(2) * np.pi / (self.lmax + 1)

        return lambda x: np.exp(-0.5 * x * (x + 1) * sigma**2)

csongor's avatar
csongor committed
165 166 167 168 169 170 171 172
    # ---Added properties and methods---

    @property
    def lmax(self):
        return self._lmax

    @property
    def mmax(self):
173
        return self._lmax
csongor's avatar
csongor committed
174 175 176 177

    def _parse_lmax(self, lmax):
        lmax = np.int(lmax)
        if lmax < 1:
178
            raise ValueError("Negative lmax is not allowed.")
csongor's avatar
csongor committed
179 180
        # exception lmax == 2 (nside == 1)
        if (lmax % 2 == 0) and (lmax > 2):
181
            self.logger.warn("Unrecommended parameter (lmax <> 2*n+1).")
csongor's avatar
csongor committed
182
        return lmax