lm_space.py 5.53 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
4
from __future__ import division

import numpy as np

5
from nifty.spaces.space import Space
theos's avatar
theos committed
6

7
from nifty.config import nifty_configuration as gc,\
csongor's avatar
csongor committed
8
                         dependency_injector as gdi
theos's avatar
theos committed
9

Jait Dixit's avatar
Jait Dixit committed
10
11
12
13
from lm_helper import _distance_array_helper

from d2o import arange

csongor's avatar
csongor committed
14
15
16
17
gl = gdi.get('libsharp_wrapper_gl')
hp = gdi.get('healpy')


18
class LMSpace(Space):
csongor's avatar
csongor committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    """
        ..       __
        ..     /  /
        ..    /  /    __ ____ ___
        ..   /  /   /   _    _   |
        ..  /  /_  /  / /  / /  /
        ..  \___/ /__/ /__/ /__/  space class

        NIFTY subclass for spherical harmonics components, for representations
        of fields on the two-sphere.

        Parameters
        ----------
        lmax : int
            Maximum :math:`\ell`-value up to which the spherical harmonics
            coefficients are to be used.
        mmax : int, *optional*
            Maximum :math:`m`-value up to which the spherical harmonics
            coefficients are to be used (default: `lmax`).
        dtype : numpy.dtype, *optional*
            Data type of the field values (default: numpy.complex128).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.

        Notes
        -----
        Hermitian symmetry, i.e. :math:`a_{\ell -m} = \overline{a}_{\ell m}` is
        always assumed for the spherical harmonics components, i.e. only fields
        on the two-sphere with real-valued representations in position space
        can be handled.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `lmax` and
            `mmax`.
        dtype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that an :py:class:`lm_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`lm_space`, which is always 1.
    """

77
    def __init__(self, lmax, dtype=np.dtype('complex128')):
csongor's avatar
csongor committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        """
            Sets the attributes for an lm_space class instance.

            Parameters
            ----------
            lmax : int
                Maximum :math:`\ell`-value up to which the spherical harmonics
                coefficients are to be used.
            mmax : int, *optional*
                Maximum :math:`m`-value up to which the spherical harmonics
                coefficients are to be used (default: `lmax`).
            dtype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.complex128).

            Returns
            -------
            None.

            Raises
            ------
            ImportError
                If neither the libsharp_wrapper_gl nor the healpy module are
                available.
            ValueError
                If input `nside` is invaild.

        """

        # check imports
        if not gc['use_libsharp'] and not gc['use_healpy']:
108
109
            raise ImportError(
                "neither libsharp_wrapper_gl nor healpy activated.")
csongor's avatar
csongor committed
110

csongor's avatar
csongor committed
111
112
        super(LMSpace, self).__init__(dtype)
        self._lmax = self._parse_lmax(lmax)
csongor's avatar
csongor committed
113

114
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
115
116
117
118

    @property
    def harmonic(self):
        return True
csongor's avatar
csongor committed
119
120

    @property
121
122
    def shape(self):
        return (self.dim, )
csongor's avatar
csongor committed
123
124

    @property
125
126
127
    def dim(self):
        l = self.lmax
        m = self.mmax
theos's avatar
theos committed
128
129
130
131
        # the LMSpace consist of the full triangle (including -m's!),
        # minus two little triangles if mmax < lmax
        # dim = (((2*(l+1)-1)+1)**2/4 - 2 * (l-m)(l-m+1)/2
        return np.int((l+1)**2 - (l-m)*(l-m+1.))
csongor's avatar
csongor committed
132

133
134
135
136
    @property
    def total_volume(self):
        # the individual pixels have a fixed volume of 1.
        return np.float(self.dim)
csongor's avatar
csongor committed
137

138
139
140
141
    def copy(self):
        return self.__class__(lmax=self.lmax,
                              mmax=self.mmax,
                              dtype=self.dtype)
csongor's avatar
csongor committed
142

143
144
145
    def weight(self, x, power=1, axes=None, inplace=False):
        if inplace:
            return x
csongor's avatar
csongor committed
146
        else:
147
            return x.copy()
csongor's avatar
csongor committed
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def get_distance_array(self, distribution_strategy):
        dists = arange(start=0, stop=self.shape[0],
                       distribution_strategy=distribution_strategy)

        dists = dists.apply_scalar_function(
            lambda x: _distance_array_helper(x, self.lmax),
            dtype=np.float)

        return dists

    def get_smoothing_kernel_function(self, sigma):
        if sigma is None:
            sigma = np.sqrt(2) * np.pi / (self.lmax + 1)

        return lambda x: np.exp(-0.5 * x * (x + 1) * sigma**2)

csongor's avatar
csongor committed
165
166
167
168
169
170
171
172
    # ---Added properties and methods---

    @property
    def lmax(self):
        return self._lmax

    @property
    def mmax(self):
173
        return self._lmax
csongor's avatar
csongor committed
174
175
176
177

    def _parse_lmax(self, lmax):
        lmax = np.int(lmax)
        if lmax < 1:
178
            raise ValueError("Negative lmax is not allowed.")
csongor's avatar
csongor committed
179
180
        # exception lmax == 2 (nside == 1)
        if (lmax % 2 == 0) and (lmax > 2):
181
            self.logger.warn("Unrecommended parameter (lmax <> 2*n+1).")
csongor's avatar
csongor committed
182
        return lmax