field.py 29.8 KB
Newer Older
csongor's avatar
csongor committed
1
2
3
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
4
5
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
6

7
from d2o import distributed_data_object,\
8
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
9

10
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
11

12
from nifty.domain_object import DomainObject
13

14
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
15

csongor's avatar
csongor committed
16
import nifty.nifty_utilities as utilities
17
18
from nifty.random import Random

csongor's avatar
csongor committed
19

Jait Dixit's avatar
Jait Dixit committed
20
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
21
    # ---Initialization methods---
22

23
    def __init__(self, domain=None, val=None, dtype=None,
24
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
25

26
        self.domain = self._parse_domain(domain=domain, val=val)
27
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
28

Theo Steininger's avatar
Theo Steininger committed
29
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
30
                                       val=val,
31
                                       domain=self.domain)
32

33
34
35
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
36

37
38
39
40
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
41

42
    def _parse_domain(self, domain, val=None):
43
        if domain is None:
44
45
46
47
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
48
        elif isinstance(domain, DomainObject):
49
            domain = (domain,)
50
51
52
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
53
        for d in domain:
54
            if not isinstance(d, DomainObject):
55
56
                raise TypeError(
                    "Given domain contains something that is not a "
57
                    "DomainObject instance.")
csongor's avatar
csongor committed
58
59
        return domain

Theo Steininger's avatar
Theo Steininger committed
60
61
62
63
64
65
66
67
68
69
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
70

71
    def _infer_dtype(self, dtype, val, domain):
csongor's avatar
csongor committed
72
        if dtype is None:
73
74
75
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
Theo Steininger's avatar
Theo Steininger committed
76
77
78
79
80
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
csongor's avatar
csongor committed
81

Theo Steininger's avatar
Theo Steininger committed
82
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
83

Theo Steininger's avatar
Theo Steininger committed
84
        return dtype
85

86
87
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
88
            if isinstance(val, distributed_data_object):
89
                distribution_strategy = val.distribution_strategy
90
            elif isinstance(val, Field):
91
                distribution_strategy = val.distribution_strategy
92
            else:
93
                self.logger.debug("distribution_strategy set to default!")
94
                distribution_strategy = gc['default_distribution_strategy']
95
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
96
97
98
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
99
        return distribution_strategy
100
101

    # ---Factory methods---
102

103
    @classmethod
104
    def from_random(cls, random_type, domain=None, dtype=None,
105
                    distribution_strategy=None, **kwargs):
106
        # create a initially empty field
107
        f = cls(domain=domain, dtype=dtype,
108
                distribution_strategy=distribution_strategy)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
144
        else:
145
146
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
147

148
        return random_arguments
csongor's avatar
csongor committed
149

150
151
152
153
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
154
        # check if all spaces in `self.domain` are either harmonic or
155
156
157
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
158
                self.logger.info(
159
                    "Field has a space in `domain` which is neither "
160
161
162
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
163
164
165
166
167
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
168
169
170
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
171
172

        if len(spaces) == 0:
173
174
            raise ValueError(
                "No space for analysis specified.")
175
        elif len(spaces) > 1:
176
177
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
178
179
180
181

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
182
183
            raise ValueError(
                "The analyzed space must be harmonic.")
184

185
186
187
188
189
190
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

191
192
193
194
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

195
196
197
198
199
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

200
201
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
202
                                  distribution_strategy=distribution_strategy,
203
204
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
205

206
        # extract pindex and rho from power_domain
207
208
        pindex = power_domain.pindex
        rho = power_domain.rho
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
227
228
229
230
231
232
233
234
235
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

236
237
238
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
267
            raise ValueError("pindex's distribution strategy must be "
268
269
270
271
272
273
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
274
                    "A slicing distributor shall not be reshaped to "
275
276
277
278
279
280
281
282
283
284
285
286
287
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

288
289
    def power_synthesize(self, spaces=None, real_signal=True,
                         mean=None, std=None):
290

Theo Steininger's avatar
Theo Steininger committed
291
        # check if all spaces in `self.domain` are either of signal-type or
292
293
        # power_space instances
        for sp in self.domain:
294
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
295
                self.logger.info(
296
                    "Field has a space in `domain` which is neither "
297
298
                    "harmonic nor a PowerSpace.")

299
300
301
302
303
304
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
305
306
307
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
308
309

        if len(spaces) == 0:
310
311
            raise ValueError(
                "No space for synthesis specified.")
312
        elif len(spaces) > 1:
313
314
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
315
316
317
318

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
319
320
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
321
322
323
324
325
326
327
328
329
330
331
332
333
334

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

335
336
        result_list = [self.__class__.from_random(
                             'normal',
337
338
339
                             mean=mean,
                             std=std,
                             domain=result_domain,
340
341
                             dtype=harmonic_domain.dtype,
                             distribution_strategy=self.distribution_strategy)
342
343
344
345
346
347
348
349
350
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
351
352
                                    axes=x.domain_axes[power_space_index],
                                    preserve_gaussian_variance=True)[0]
353
354
355
356
357
358
359
360
361
362
363
364
365
366
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
367
            self.logger.warn(
368
                "The distribution_stragey of pindex does not fit the "
369
370
371
372
373
374
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
375
        full_spec = self.val.get_full_data()
376
377
378
379
380

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
381
        local_rescaler = full_spec[local_blow_up]
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
403

Theo Steininger's avatar
Theo Steininger committed
404
    # ---Properties---
405

Theo Steininger's avatar
Theo Steininger committed
406
    def set_val(self, new_val=None, copy=False):
407
408
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
409
410
            new_val = new_val.copy()
        self._val = new_val
411
        return self
csongor's avatar
csongor committed
412

413
    def get_val(self, copy=False):
414
415
416
        if self._val is None:
            self.set_val(None)

417
        if copy:
Theo Steininger's avatar
Theo Steininger committed
418
            return self._val.copy()
419
        else:
Theo Steininger's avatar
Theo Steininger committed
420
            return self._val
csongor's avatar
csongor committed
421

Theo Steininger's avatar
Theo Steininger committed
422
423
    @property
    def val(self):
424
        return self.get_val(copy=False)
csongor's avatar
csongor committed
425

Theo Steininger's avatar
Theo Steininger committed
426
427
    @val.setter
    def val(self, new_val):
428
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
429

430
431
    @property
    def shape(self):
432
        shape_tuple = tuple(sp.shape for sp in self.domain)
433
434
435
436
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
437

438
        return global_shape
csongor's avatar
csongor committed
439

440
441
    @property
    def dim(self):
442
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
443
444
445
446
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
447

448
449
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
450
451
452
453
454
455
456
457
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
458
        try:
Theo Steininger's avatar
Theo Steininger committed
459
            return reduce(lambda x, y: x * y, volume_tuple)
460
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
461
            return 0.
462

Theo Steininger's avatar
Theo Steininger committed
463
    # ---Special unary/binary operations---
464

csongor's avatar
csongor committed
465
466
467
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
468
469
        else:
            dtype = np.dtype(dtype)
470

471
472
        casted_x = x

473
        for ind, sp in enumerate(self.domain):
474
            casted_x = sp.pre_cast(casted_x,
475
476
477
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
478
479

        for ind, sp in enumerate(self.domain):
480
481
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
482

483
        return casted_x
csongor's avatar
csongor committed
484

Theo Steininger's avatar
Theo Steininger committed
485
    def _actual_cast(self, x, dtype=None):
486
        if isinstance(x, Field):
csongor's avatar
csongor committed
487
488
489
490
491
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

492
        return_x = distributed_data_object(
493
494
495
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
496
497
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
498

499
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
500
        copied_val = self.get_val(copy=True)
501
502
503
504
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
505
506
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
507

508
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
509
510
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
511
        else:
Theo Steininger's avatar
Theo Steininger committed
512
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
513

Theo Steininger's avatar
Theo Steininger committed
514
515
516
517
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
518

519
520
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
521

Theo Steininger's avatar
Theo Steininger committed
522
523
524
525
526
527
528
529
530
531
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
532
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
533
534
535
536
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
537
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
538
        return new_field
csongor's avatar
csongor committed
539

Theo Steininger's avatar
Theo Steininger committed
540
541
542
543
544
545
546
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
547
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
548
549
550
551
552
553
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
554
        if inplace:
csongor's avatar
csongor committed
555
556
557
558
            new_field = self
        else:
            new_field = self.copy_empty()

559
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
560

561
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
562
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
563
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
564

565
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
566
567
568
569
570
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
571
572

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
573
574
        return new_field

575
576
577
578
579
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
580
581
582
583
584
585
586

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
602

603
    def norm(self, q=2):
csongor's avatar
csongor committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
618
        if q == 2:
619
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
620
        else:
621
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

638
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
639
        new_val = new_val.conjugate()
640
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
641
642
643

        return work_field

Theo Steininger's avatar
Theo Steininger committed
644
    # ---General unary/contraction methods---
645

Theo Steininger's avatar
Theo Steininger committed
646
647
    def __pos__(self):
        return self.copy()
648

Theo Steininger's avatar
Theo Steininger committed
649
650
651
652
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
653
654
        return return_field

Theo Steininger's avatar
Theo Steininger committed
655
656
657
658
659
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
660

661
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
662
663
664
665
666
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
667

668
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
669
670

        try:
Theo Steininger's avatar
Theo Steininger committed
671
            axes_list = reduce(lambda x, y: x+y, axes_list)
672
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
673
            axes_list = ()
csongor's avatar
csongor committed
674

Theo Steininger's avatar
Theo Steininger committed
675
676
677
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
678

Theo Steininger's avatar
Theo Steininger committed
679
680
681
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
682
        else:
Theo Steininger's avatar
Theo Steininger committed
683
684
685
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
686

Theo Steininger's avatar
Theo Steininger committed
687
688
689
690
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
691

692
693
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
694

695
696
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
697

698
699
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
700

701
702
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
703

704
705
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
706

707
708
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
709

710
711
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
712

713
714
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
715

716
717
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
718

719
720
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
721

722
723
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
724

Theo Steininger's avatar
Theo Steininger committed
725
    # ---General binary methods---
csongor's avatar
csongor committed
726

Theo Steininger's avatar
Theo Steininger committed
727
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
728
        # if other is a field, make sure that the domains match
729
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
730
731
732
733
734
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
735
736
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
737
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
738

Theo Steininger's avatar
Theo Steininger committed
739
740
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
741
742
743
744

        if inplace:
            working_field = self
        else:
745
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
746

Theo Steininger's avatar
Theo Steininger committed
747
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
748
749
750
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
751
        return self._binary_helper(other, op='__add__')
752

753
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
754
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
755
756

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
757
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
758
759

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
760
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
761
762

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
763
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
764
765

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
766
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
767
768

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
769
        return self._binary_helper(other, op='__mul__')
770

771
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
772
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
773
774

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
775
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
776
777

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
778
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
779
780

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
781
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
782
783

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
784
        return self._binary_helper(other, op='__idiv__', inplace=True)
785

csongor's avatar
csongor committed
786
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
787
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
788
789

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
790
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
791
792

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
793
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
794
795

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
796
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
797
798

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
799
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
800
801
802
803
804

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
805
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
806
807
808
809
810

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
811
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
812
813

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
814
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
815
816

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
817
818
819
820
821
822
823
824
825
826
827
828
829
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
830

Jait Dixit's avatar
Jait Dixit committed
831
832
833
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
834
835
836
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
837
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
838

Theo Steininger's avatar
Theo Steininger committed
839
840
841
842
        if self._val is None:
            ret_dict = {}
        else:
            ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
843
844
845
846
847
848
849

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
850
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
851
852
853
854
855
856
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
857
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
858
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
859
860
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
861
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
Theo Steininger's avatar
Theo Steininger committed
862
863
864
865
866
867

        try:
            new_field._val = repository.get('val', hdf5_group)
        except(KeyError):
            new_field._val = None

Theo Steininger's avatar
Theo Steininger committed
868
869
870
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
871
872

        return new_field
873

Theo Steininger's avatar
Theo Steininger committed
874

875
class EmptyField(Field):
csongor's avatar
csongor committed
876
877
    def __init__(self):
        pass