test_field.py 4.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18
19
20
21

import unittest

import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
22
from numpy.testing import assert_equal,\
23
                          assert_allclose
Theo Steininger's avatar
Theo Steininger committed
24
from nose.plugins.skip import SkipTest
25

26
from itertools import product
27

Martin Reinecke's avatar
Martin Reinecke committed
28
from nifty2go import Field,\
29
                  RGSpace,\
30
                  LMSpace,\
Martin Reinecke's avatar
Martin Reinecke committed
31
32
                  PowerSpace,\
                  DomainTuple
33

Martin Reinecke's avatar
Martin Reinecke committed
34
35
from nifty2go.sugar import create_power_operator

Jait Dixit's avatar
Jait Dixit committed
36
from test.common import expand
37
38


Martin Reinecke's avatar
Martin Reinecke committed
39
SPACES = [RGSpace((4,)), RGSpace((5))]
Theo Steininger's avatar
Theo Steininger committed
40
SPACE_COMBINATIONS = [(), SPACES[0], SPACES[1], SPACES]
41
42
43


class Test_Interface(unittest.TestCase):
44
    @expand(product(SPACE_COMBINATIONS,
Martin Reinecke's avatar
Martin Reinecke committed
45
                    [['domain', DomainTuple],
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
46
                     ['val', np.ndarray],
47
                     ['shape', tuple],
Martin Reinecke's avatar
Martin Reinecke committed
48
                     ['dim', (np.int, np.int64)],
49
50
51
52
                     ['total_volume', np.float]]))
    def test_return_types(self, domain, attribute_desired_type):
        attribute = attribute_desired_type[0]
        desired_type = attribute_desired_type[1]
53
        f = Field(domain=domain)
Martin Reinecke's avatar
Martin Reinecke committed
54
        assert_equal(isinstance(getattr(f, attribute), desired_type), True)
55

Martin Reinecke's avatar
Martin Reinecke committed
56

57
class Test_Functionality(unittest.TestCase):
58
59
60
    @expand(product([RGSpace((8,), harmonic=True),
                     RGSpace((8, 8), harmonic=True, distances=0.123)],
                    [RGSpace((8,), harmonic=True),
Martin Reinecke's avatar
more    
Martin Reinecke committed
61
62
                     LMSpace(12)]))
    def test_power_synthesize_analyze(self, space1, space2):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
63
        np.random.seed(11)
64

65
66
        p1 = PowerSpace(space1)
        spec1 = lambda k: 42/(1+k)**2
Martin Reinecke's avatar
Martin Reinecke committed
67
        fp1 = Field(p1, val=spec1(p1.kindex))
68
69
70

        p2 = PowerSpace(space2)
        spec2 = lambda k: 42/(1+k)**3
Martin Reinecke's avatar
Martin Reinecke committed
71
        fp2 = Field(p2, val=spec2(p2.kindex))
72

Martin Reinecke's avatar
stage1    
Martin Reinecke committed
73
        outer = np.outer(fp1.val, fp2.val)
74
75
        fp = Field((p1, p2), val=outer)

Martin Reinecke's avatar
Martin Reinecke committed
76
        samples = 500
77
78
        ps1 = 0.
        ps2 = 0.
Martin Reinecke's avatar
Martin Reinecke committed
79
        for ii in range(samples):
80
81
82
83
84
85
            sk = fp.power_synthesize(spaces=(0, 1), real_signal=True)

            sp = sk.power_analyze(spaces=(0, 1), keep_phase_information=False)
            ps1 += sp.sum(spaces=1)/fp2.sum()
            ps2 += sp.sum(spaces=0)/fp1.sum()

Martin Reinecke's avatar
Martin Reinecke committed
86
87
        assert_allclose(ps1.val/samples, fp1.val, rtol=0.2)
        assert_allclose(ps2.val/samples, fp2.val, rtol=0.2)
Martin Reinecke's avatar
Martin Reinecke committed
88

Martin Reinecke's avatar
Martin Reinecke committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    @expand(product([RGSpace((8,), harmonic=True),
                     RGSpace((8, 8), harmonic=True, distances=0.123)],
                    [RGSpace((8,), harmonic=True),
                     LMSpace(12)]))
    def test_DiagonalOperator_power_analyze(self, space1, space2):
        np.random.seed(11)

        p1 = PowerSpace(space1)
        spec1 = lambda k: 42/(1+k)**2
        fp1 = Field(p1, val=spec1(p1.kindex))

        p2 = PowerSpace(space2)
        spec2 = lambda k: 42/(1+k)**3
        fp2 = Field(p2, val=spec2(p2.kindex))

        S_1 = create_power_operator(space1, lambda x: np.sqrt(spec1(x)))
        S_2 = create_power_operator(space2, lambda x: np.sqrt(spec2(x)))
        S_1.set_diagonal(S_1.diagonal().weight(-1))
        S_2.set_diagonal(S_2.diagonal().weight(-1))

        samples = 500
        ps1 = 0.
        ps2 = 0.

        for ii in range(samples):
            rand_k = Field.from_random('normal', domain=(space1, space2))
            sk = S_1.times(S_2.times(rand_k, spaces=1), spaces=0)
            sp = sk.power_analyze(spaces=(0, 1), keep_phase_information=False)
            ps1 += sp.sum(spaces=1)/fp2.sum()
            ps2 += sp.sum(spaces=0)/fp1.sum()

        assert_allclose(ps1.val/samples, fp1.val, rtol=0.2)
        assert_allclose(ps2.val/samples, fp2.val, rtol=0.2)

Martin Reinecke's avatar
Martin Reinecke committed
124
125
126
127
128
129
130
131
    def test_vdot(self):
        s=RGSpace((10,))
        f1=Field.from_random("normal",domain=s,dtype=np.complex128)
        f2=Field.from_random("normal",domain=s,dtype=np.complex128)
        assert_allclose(f1.vdot(f2),f1.vdot(f2,spaces=0))
        assert_allclose(f1.vdot(f2),np.conj(f2.vdot(f1)))