correlated_fields.py 29.9 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2020 Max-Planck-Society
Philipp Arras's avatar
Philipp Arras committed
15
# Authors: Philipp Frank, Philipp Arras, Philipp Haim
Martin Reinecke's avatar
Martin Reinecke committed
16
#
17
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
18

19 20 21
from functools import reduce
from operator import mul

Philipp Arras's avatar
Philipp Arras committed
22
import numpy as np
23

Philipp Arras's avatar
Philipp Arras committed
24
from .. import utilities
Philipp Arras's avatar
Philipp Arras committed
25
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
26 27
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
Philipp Arras's avatar
Philipp Arras committed
28
from ..field import Field
29
from ..logger import logger
Philipp Arras's avatar
Philipp Arras committed
30
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
31
from ..operators.adder import Adder
32
from ..operators.contraction_operator import ContractionOperator
Philipp Arras's avatar
Philipp Arras committed
33
from ..operators.diagonal_operator import DiagonalOperator
Philipp Arras's avatar
Philipp Arras committed
34
from ..operators.distributors import PowerDistributor
Philipp Arras's avatar
Philipp Arras committed
35
from ..operators.endomorphic_operator import EndomorphicOperator
Martin Reinecke's avatar
Martin Reinecke committed
36
from ..operators.harmonic_operators import HarmonicTransformOperator
Philipp Arras's avatar
Philipp Arras committed
37
from ..operators.linear_operator import LinearOperator
Philipp Arras's avatar
Philipp Arras committed
38
from ..operators.operator import Operator
Philipp Arras's avatar
Philipp Arras committed
39
from ..operators.simple_linear_operators import ducktape
40
from ..operators.normal_operators import NormalTransform, LognormalTransform
41
from ..probing import StatCalculator
Philipp Arras's avatar
Philipp Arras committed
42
from ..sugar import full, makeDomain, makeField, makeOp
43

44

Philipp Arras's avatar
Philipp Arras committed
45
def _log_k_lengths(pspace):
Philipp Arras's avatar
Philipp Arras committed
46
    """Log(k_lengths) without zeromode"""
Philipp Arras's avatar
Philipp Arras committed
47 48 49
    return np.log(pspace.k_lengths[1:])


Philipp Arras's avatar
Philipp Arras committed
50
def _relative_log_k_lengths(power_space):
Philipp Arras's avatar
Philipp Arras committed
51 52
    """Log-distance to first bin
    logkl.shape==power_space.shape, logkl[0]=logkl[1]=0"""
Philipp Arras's avatar
Philipp Arras committed
53 54 55 56 57 58
    power_space = DomainTuple.make(power_space)
    assert isinstance(power_space[0], PowerSpace)
    assert len(power_space) == 1
    logkl = _log_k_lengths(power_space[0])
    assert logkl.shape[0] == power_space[0].shape[0] - 1
    logkl -= logkl[0]
Philipp Arras's avatar
Philipp Arras committed
59
    return np.insert(logkl, 0, 0)
Philipp Arras's avatar
Philipp Arras committed
60 61


Philipp Arras's avatar
Philipp Arras committed
62
def _log_vol(power_space):
63
    power_space = makeDomain(power_space)
Philipp Arras's avatar
Philipp Arras committed
64 65 66 67 68
    assert isinstance(power_space[0], PowerSpace)
    logk_lengths = _log_k_lengths(power_space[0])
    return logk_lengths[1:] - logk_lengths[:-1]


Philipp Haim's avatar
Philipp Haim committed
69 70 71 72 73 74
def _structured_spaces(domain):
    if isinstance(domain[0], UnstructuredDomain):
        return np.arange(1, len(domain))
    return np.arange(len(domain))


Philipp Haim's avatar
Philipp Haim committed
75
def _total_fluctuation_realized(samples):
Philipp Haim's avatar
Philipp Haim committed
76 77 78
    spaces = _structured_spaces(samples[0].domain)
    co = ContractionOperator(samples[0].domain, spaces)
    size = co.domain.size/co.target.size
79 80
    res = 0.
    for s in samples:
Philipp Haim's avatar
Philipp Haim committed
81 82
        res = res + (s - co.adjoint(co(s)/size))**2
    res = res.mean(spaces)/len(samples)
Philipp Haim's avatar
Philipp Haim committed
83
    return np.sqrt(res if np.isscalar(res) else res.val)
84 85


Philipp Frank's avatar
Philipp Frank committed
86
class _SlopeRemover(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
87
    def __init__(self, domain, space=0):
Philipp Frank's avatar
Philipp Frank committed
88
        self._domain = makeDomain(domain)
89 90
        assert isinstance(self._domain[space], PowerSpace)
        logkl = _relative_log_k_lengths(self._domain[space])
91
        self._sc = logkl/float(logkl[-1])
Philipp Arras's avatar
Philipp Arras committed
92

93
        self._space = space
Philipp Haim's avatar
Philipp Haim committed
94 95 96
        axis = self._domain.axes[space][0]
        self._last = (slice(None),)*axis + (-1,) + (None,)
        self._extender = (None,)*(axis) + (slice(None),) + (None,)*(self._domain.axes[-1][-1]-axis)
Philipp Frank's avatar
Philipp Frank committed
97
        self._capability = self.TIMES | self.ADJOINT_TIMES
Philipp Arras's avatar
Philipp Arras committed
98

99 100
    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
101
        x = x.val
Philipp Frank's avatar
Philipp Frank committed
102
        if mode == self.TIMES:
Philipp Haim's avatar
Philipp Haim committed
103
            res = x - x[self._last]*self._sc[self._extender]
Philipp Frank's avatar
Philipp Frank committed
104
        else:
105 106
            res = x.copy()
            res[self._last] -= (x*self._sc[self._extender]).sum(
Philipp Arras's avatar
Philipp Arras committed
107
                axis=self._space, keepdims=True)
Martin Reinecke's avatar
Martin Reinecke committed
108
        return makeField(self._tgt(mode), res)
Philipp Frank's avatar
Philipp Frank committed
109

Philipp Arras's avatar
Philipp Arras committed
110 111

class _TwoLogIntegrations(LinearOperator):
Martin Reinecke's avatar
Martin Reinecke committed
112
    def __init__(self, target, space=0):
Philipp Arras's avatar
Philipp Arras committed
113
        self._target = makeDomain(target)
114 115 116 117 118
        assert isinstance(self.target[space], PowerSpace)
        dom = list(self._target)
        dom[space] = UnstructuredDomain((2, self.target[space].shape[0]-2))
        self._domain = makeDomain(dom)
        self._space = space
119
        self._log_vol = _log_vol(self._target[space])
Philipp Arras's avatar
Philipp Arras committed
120 121 122 123
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
124

Martin Reinecke's avatar
Martin Reinecke committed
125
        # Maybe make class properties
126 127
        axis = self._target.axes[self._space][0]
        sl = (slice(None),)*axis
Philipp Haim's avatar
Fixes  
Philipp Haim committed
128
        extender_sl = (None,)*axis + (slice(None),) + (None,)*(self._target.axes[-1][-1] - axis)
129 130
        first = sl + (0,)
        second = sl + (1,)
Martin Reinecke's avatar
Martin Reinecke committed
131 132 133
        from_third = sl + (slice(2, None),)
        no_border = sl + (slice(1, -1),)
        reverse = sl + (slice(None, None, -1),)
134

Philipp Arras's avatar
Philipp Arras committed
135
        if mode == self.TIMES:
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
136
            x = x.val
Philipp Arras's avatar
Philipp Arras committed
137
            res = np.empty(self._target.shape)
138
            res[first] = res[second] = 0
Martin Reinecke's avatar
Martin Reinecke committed
139
            res[from_third] = np.cumsum(x[second], axis=axis)
140
            res[from_third] = (res[from_third] + res[no_border])/2*self._log_vol[extender_sl] + x[first]
Martin Reinecke's avatar
Martin Reinecke committed
141
            res[from_third] = np.cumsum(res[from_third], axis=axis)
Philipp Arras's avatar
Philipp Arras committed
142
        else:
Martin Reinecke's avatar
Martin Reinecke committed
143
            x = x.val_rw()
Philipp Arras's avatar
Philipp Arras committed
144
            res = np.zeros(self._domain.shape)
Martin Reinecke's avatar
Martin Reinecke committed
145
            x[from_third] = np.cumsum(x[from_third][reverse], axis=axis)[reverse]
146
            res[first] += x[from_third]
147
            x[from_third] *= (self._log_vol/2.)[extender_sl]
148
            x[no_border] += x[from_third]
Martin Reinecke's avatar
Martin Reinecke committed
149
            res[second] += np.cumsum(x[from_third][reverse], axis=axis)[reverse]
Martin Reinecke's avatar
Martin Reinecke committed
150
        return makeField(self._tgt(mode), res)
Philipp Arras's avatar
Philipp Arras committed
151 152 153


class _Normalization(Operator):
Martin Reinecke's avatar
Martin Reinecke committed
154
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
155
        self._domain = self._target = DomainTuple.make(domain)
156
        assert isinstance(self._domain[space], PowerSpace)
157 158 159
        hspace = list(self._domain)
        hspace[space] = hspace[space].harmonic_partner
        hspace = makeDomain(hspace)
Philipp Arras's avatar
Philipp Arras committed
160 161 162
        pd = PowerDistributor(hspace,
                              power_space=self._domain[space],
                              space=space)
Martin Reinecke's avatar
Martin Reinecke committed
163
        mode_multiplicity = pd.adjoint(full(pd.target, 1.)).val_rw()
164
        zero_mode = (slice(None),)*self._domain.axes[space][0] + (0,)
Philipp Haim's avatar
Philipp Haim committed
165
        mode_multiplicity[zero_mode] = 0
Philipp Arras's avatar
Philipp Arras committed
166
        self._mode_multiplicity = makeOp(makeField(self._domain, mode_multiplicity))
167
        self._specsum = _SpecialSum(self._domain, space)
Philipp Arras's avatar
Philipp Arras committed
168 169 170

    def apply(self, x):
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
171
        amp = x.ptw("exp")
172
        spec = amp**2
Philipp Arras's avatar
Philipp Arras committed
173 174
        # FIXME This normalizes also the zeromode which is supposed to be left
        # untouched by this operator
Philipp Arras's avatar
Philipp Arras committed
175
        return self._specsum(self._mode_multiplicity(spec))**(-0.5)*amp
Philipp Arras's avatar
Philipp Arras committed
176 177 178


class _SpecialSum(EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
179
    def __init__(self, domain, space=0):
Philipp Arras's avatar
Philipp Arras committed
180 181
        self._domain = makeDomain(domain)
        self._capability = self.TIMES | self.ADJOINT_TIMES
182
        self._contractor = ContractionOperator(domain, space)
Philipp Arras's avatar
Philipp Arras committed
183 184 185

    def apply(self, x, mode):
        self._check_input(x, mode)
186
        return self._contractor.adjoint(self._contractor(x))
Philipp Arras's avatar
Philipp Arras committed
187 188


Philipp Haim's avatar
Philipp Haim committed
189
class _Distributor(LinearOperator):
Lukas Platz's avatar
Lukas Platz committed
190
    def __init__(self, dofdex, domain, target):
191 192 193
        self._dofdex = np.array(dofdex)
        self._target = DomainTuple.make(target)
        self._domain = DomainTuple.make(domain)
Philipp Haim's avatar
Philipp Haim committed
194 195 196 197
        self._capability = self.TIMES | self.ADJOINT_TIMES

    def apply(self, x, mode):
        self._check_input(x, mode)
Martin Reinecke's avatar
stage 3  
Martin Reinecke committed
198
        x = x.val
Philipp Haim's avatar
Philipp Haim committed
199 200 201
        if mode == self.TIMES:
            res = x[self._dofdex]
        else:
202
            res = np.zeros(self._tgt(mode).shape, dtype=x.dtype)
203
            res = utilities.special_add_at(res, 0, self._dofdex, x)
Martin Reinecke's avatar
Martin Reinecke committed
204
        return makeField(self._tgt(mode), res)
Martin Reinecke's avatar
Martin Reinecke committed
205

206

207 208
class _Amplitude(Operator):
    def __init__(self, target, fluctuations, flexibility, asperity,
209
                 loglogavgslope, azm, totvol, key, dofdex):
Philipp Arras's avatar
Philipp Arras committed
210 211
        """
        fluctuations > 0
212 213
        flexibility > 0 or None
        asperity > 0 or None
Philipp Arras's avatar
Philipp Arras committed
214 215 216
        loglogavgslope probably negative
        """
        assert isinstance(fluctuations, Operator)
217 218
        assert isinstance(flexibility, Operator) or flexibility is None
        assert isinstance(asperity, Operator) or asperity is None
Philipp Arras's avatar
Philipp Arras committed
219 220
        assert isinstance(loglogavgslope, Operator)

Philipp Haim's avatar
Philipp Haim committed
221 222
        if len(dofdex) > 0:
            N_copies = max(dofdex) + 1
Philipp Haim's avatar
Philipp Haim committed
223
            space = 1
Philipp Frank's avatar
cleanup  
Philipp Frank committed
224 225
            distributed_tgt = makeDomain((UnstructuredDomain(len(dofdex)),
                                          target))
Philipp Haim's avatar
Philipp Haim committed
226
            target = makeDomain((UnstructuredDomain(N_copies), target))
Lukas Platz's avatar
Lukas Platz committed
227
            Distributor = _Distributor(dofdex, target, distributed_tgt)
Philipp Haim's avatar
Philipp Haim committed
228
        else:
Philipp Haim's avatar
Philipp Haim committed
229
            N_copies = 0
Philipp Haim's avatar
Philipp Haim committed
230
            space = 0
Philipp Haim's avatar
Philipp Haim committed
231
            distributed_tgt = target = makeDomain(target)
Martin Reinecke's avatar
Martin Reinecke committed
232
        azm_expander = ContractionOperator(distributed_tgt, spaces=space).adjoint
Philipp Haim's avatar
Philipp Haim committed
233
        assert isinstance(target[space], PowerSpace)
Martin Reinecke's avatar
Martin Reinecke committed
234

235
        twolog = _TwoLogIntegrations(target, space)
Philipp Arras's avatar
Philipp Arras committed
236
        dom = twolog.domain
237

238
        shp = dom[space].shape
Martin Reinecke's avatar
Martin Reinecke committed
239 240
        expander = ContractionOperator(dom, spaces=space).adjoint
        ps_expander = ContractionOperator(twolog.target, spaces=space).adjoint
Philipp Arras's avatar
Philipp Arras committed
241 242 243

        # Prepare constant fields
        foo = np.zeros(shp)
244
        foo[0] = foo[1] = np.sqrt(_log_vol(target[space]))
Martin Reinecke's avatar
Martin Reinecke committed
245
        vflex = DiagonalOperator(makeField(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
246 247 248

        foo = np.zeros(shp, dtype=np.float64)
        foo[0] += 1
Martin Reinecke's avatar
Martin Reinecke committed
249
        vasp = DiagonalOperator(makeField(dom[space], foo), dom, space)
Philipp Arras's avatar
Philipp Arras committed
250 251

        foo = np.ones(shp)
252
        foo[0] = _log_vol(target[space])**2/12.
Martin Reinecke's avatar
Martin Reinecke committed
253
        shift = DiagonalOperator(makeField(dom[space], foo), dom, space)
Martin Reinecke's avatar
Martin Reinecke committed
254

255
        vslope = DiagonalOperator(
Philipp Arras's avatar
Philipp Arras committed
256
            makeField(target[space], _relative_log_k_lengths(target[space])),
Martin Reinecke's avatar
Martin Reinecke committed
257
            target, space)
258 259

        foo, bar = [np.zeros(target[space].shape) for _ in range(2)]
Philipp Arras's avatar
Philipp Arras committed
260
        bar[1:] = foo[0] = totvol
Philipp Arras's avatar
Philipp Arras committed
261 262 263 264
        vol0, vol1 = [
            DiagonalOperator(makeField(target[space], aa), target, space)
            for aa in (foo, bar)
        ]
265

Martin Reinecke's avatar
Martin Reinecke committed
266
        # Prepare fields for Adder
267
        shift, vol0 = [op(full(op.domain, 1)) for op in (shift, vol0)]
Philipp Arras's avatar
Philipp Arras committed
268 269
        # End prepare constant fields

270
        slope = vslope @ ps_expander @ loglogavgslope
271 272
        sig_flex = vflex @ expander @ flexibility if flexibility is not None else None
        sig_asp = vasp @ expander @ asperity if asperity is not None else None
273
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Haim's avatar
Philipp Haim committed
274
        sig_fluc = vol1 @ ps_expander @ fluctuations
Philipp Arras's avatar
Philipp Arras committed
275

276 277 278 279 280 281 282
        if sig_asp is None and sig_flex is None:
            op = _Normalization(target, space) @ slope
        elif sig_asp is None:
            xi = ducktape(dom, None, key)
            sigma = DiagonalOperator(shift.ptw("sqrt"), dom, space) @ sig_flex
            smooth = _SlopeRemover(target, space) @ twolog @ (sigma * xi)
            op = _Normalization(target, space) @ (slope + smooth)
283 284
        elif sig_flex is None:
            raise ValueError("flexibility may not be disabled on its own")
285 286 287 288 289 290
        else:
            xi = ducktape(dom, None, key)
            sigma = sig_flex * (Adder(shift) @ sig_asp).ptw("sqrt")
            smooth = _SlopeRemover(target, space) @ twolog @ (sigma * xi)
            op = _Normalization(target, space) @ (slope + smooth)

Philipp Haim's avatar
Philipp Haim committed
291
        if N_copies > 0:
Philipp Haim's avatar
Philipp Haim committed
292 293
            op = Distributor @ op
            sig_fluc = Distributor @ sig_fluc
Martin Reinecke's avatar
Martin Reinecke committed
294
            op = Adder(Distributor(vol0)) @ (sig_fluc*(azm_expander @ azm.ptw("reciprocal"))*op)
Philipp Arras's avatar
Philipp Arras committed
295 296
            self._fluc = (_Distributor(dofdex, fluctuations.target,
                                       distributed_tgt[0]) @ fluctuations)
Philipp Haim's avatar
Philipp Haim committed
297
        else:
Martin Reinecke's avatar
Martin Reinecke committed
298
            op = Adder(vol0) @ (sig_fluc*(azm_expander @ azm.ptw("reciprocal"))*op)
Philipp Frank's avatar
fixup  
Philipp Frank committed
299
            self._fluc = fluctuations
Philipp Arras's avatar
Philipp Arras committed
300

Philipp Arras's avatar
Philipp Arras committed
301 302
        self.apply = op.apply
        self._domain, self._target = op.domain, op.target
303
        self._space = space
304
        self._repr_str = "_Amplitude: " + op.__repr__()
Philipp Arras's avatar
Philipp Arras committed
305

Philipp Arras's avatar
Philipp Arras committed
306 307 308 309
    @property
    def fluctuation_amplitude(self):
        return self._fluc

310 311 312
    def __repr__(self):
        return self._repr_str

313 314

class CorrelatedFieldMaker:
315
    """Construction helper for hierarchical correlated field models.
Lukas Platz's avatar
Lukas Platz committed
316 317

    The correlated field models are parametrized by creating
318 319
    power spectrum operators ("amplitudes") via calls to
    :func:`add_fluctuations` that act on the targeted field subdomains.
Lukas Platz's avatar
Lukas Platz committed
320
    During creation of the :class:`CorrelatedFieldMaker` via
321 322 323
    :func:`make`, a global offset from zero of the field model
    can be defined and an operator applying fluctuations
    around this offset is parametrized.
Lukas Platz's avatar
Lukas Platz committed
324 325

    The resulting correlated field model operator has a
Martin Reinecke's avatar
Martin Reinecke committed
326
    :class:`~nifty7.multi_domain.MultiDomain` as its domain and
Lukas Platz's avatar
Lukas Platz committed
327 328 329
    expects its input values to be univariately gaussian.

    The target of the constructed operator will be a
Martin Reinecke's avatar
merge  
Martin Reinecke committed
330
    :class:`~nifty7.domain_tuple.DomainTuple` containing the
331 332
    `target_subdomains` of the added fluctuations in the order of
    the `add_fluctuations` calls.
Lukas Platz's avatar
Lukas Platz committed
333

334
    Creation of the model operator is completed by calling the method
Lukas Platz's avatar
Lukas Platz committed
335 336
    :func:`finalize`, which returns the configured operator.

337 338 339 340 341 342 343 344 345 346
    An operator representing an array of correlated field models
    can be constructed by setting the `total_N` parameter of
    :func:`make`. It will have an
    :class:`~nifty.domains.unstructucture_domain.UnstructureDomain`
    of shape `(total_N,)` prepended to its target domain and represent
    `total_N` correlated fields simulataneously.
    The degree of information sharing between the correlated field
    models can be configured via the `dofdex` parameters
    of :func:`make` and :func:`add_fluctuations`.

Lukas Platz's avatar
Lukas Platz committed
347
    See the methods :func:`make`, :func:`add_fluctuations`
348
    and :func:`finalize` for further usage information."""
349 350 351
    def __init__(self, offset_mean, offset_fluctuations_op, prefix, total_N):
        if not isinstance(offset_fluctuations_op, Operator):
            raise TypeError("offset_fluctuations_op needs to be an operator")
352
        self._a = []
353
        self._target_subdomains = []
Philipp Arras's avatar
Formats  
Philipp Arras committed
354

355 356
        self._offset_mean = offset_mean
        self._azm = offset_fluctuations_op
357
        self._prefix = prefix
Philipp Haim's avatar
Philipp Haim committed
358
        self._total_N = total_N
Philipp Arras's avatar
Formats  
Philipp Arras committed
359

360
    @staticmethod
Philipp Arras's avatar
Philipp Arras committed
361
    def make(offset_mean, offset_std_mean, offset_std_std, prefix, total_N=0,
Martin Reinecke's avatar
Martin Reinecke committed
362
             dofdex=None):
Lukas Platz's avatar
Lukas Platz committed
363 364 365 366 367 368 369
        """Returns a CorrelatedFieldMaker object.

        Parameters
        ----------
        offset_mean : float
            Mean offset from zero of the correlated field to be made.
        offset_std_mean : float
Lukas Platz's avatar
Lukas Platz committed
370
            Mean standard deviation of the offset.
Lukas Platz's avatar
Lukas Platz committed
371
        offset_std_std : float
Lukas Platz's avatar
Lukas Platz committed
372
            Standard deviation of the stddev of the offset.
Lukas Platz's avatar
Lukas Platz committed
373 374
        prefix : string
            Prefix to the names of the domains of the cf operator to be made.
Lukas Platz's avatar
Lukas Platz committed
375
            This determines the names of the operator domain.
376 377
        total_N : integer, optional
            Number of field models to create.
Lukas Platz's avatar
Lukas Platz committed
378 379 380
            If not 0, the first entry of the operators target will be an
            :class:`~nifty.domains.unstructured_domain.UnstructuredDomain`
            with length `total_N`.
381
        dofdex : np.array of integers, optional
Philipp Arras's avatar
Philipp Arras committed
382 383 384
            An integer array specifying the zero mode models used if
            total_N > 1. It needs to have length of total_N. If total_N=3 and
            dofdex=[0,0,1], that means that two models for the zero mode are
385
            instantiated; the first one is used for the first and second
386 387 388
            field model and the second is used for the third field model.
            *If not specified*, use the same zero mode model for all
            constructed field models.
Lukas Platz's avatar
Lukas Platz committed
389
        """
Philipp Frank's avatar
Philipp Frank committed
390 391
        if dofdex is None:
            dofdex = np.full(total_N, 0)
392 393
        elif len(dofdex) != total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Frank's avatar
Philipp Frank committed
394
        N = max(dofdex) + 1 if total_N > 0 else 0
395 396
        zm = LognormalTransform(offset_std_mean, offset_std_std,
                                prefix + 'zeromode', N)
Philipp Frank's avatar
fixup  
Philipp Frank committed
397
        if total_N > 0:
Martin Reinecke's avatar
Martin Reinecke committed
398
            zm = _Distributor(dofdex, zm.target, UnstructuredDomain(total_N)) @ zm
399
        return CorrelatedFieldMaker(offset_mean, zm, prefix, total_N)
400 401

    def add_fluctuations(self,
402
                         target_subdomain,
403 404 405 406 407 408 409 410
                         fluctuations_mean,
                         fluctuations_stddev,
                         flexibility_mean,
                         flexibility_stddev,
                         asperity_mean,
                         asperity_stddev,
                         loglogavgslope_mean,
                         loglogavgslope_stddev,
Martin Reinecke's avatar
Martin Reinecke committed
411 412 413 414
                         prefix='',
                         index=None,
                         dofdex=None,
                         harmonic_partner=None):
Lukas Platz's avatar
Lukas Platz committed
415 416 417 418 419 420
        """Function to add correlation structures to the field to be made.

        Correlations are described by their power spectrum and the subdomain
        on which they apply.

        The parameters `fluctuations`, `flexibility`, `asperity` and
421 422
        `loglogavgslope` configure the power spectrum model ("amplitude")
        used on the target field subdomain `target_subdomain`.
Lukas Platz's avatar
Lukas Platz committed
423 424 425
        It is assembled as the sum of a power law component
        (linear slope in log-log power-frequency-space),
        a smooth varying component (integrated wiener process) and
426
        a ragged component (un-integrated wiener process).
Lukas Platz's avatar
Lukas Platz committed
427 428 429 430 431 432 433

        Multiple calls to `add_fluctuations` are possible, in which case
        the constructed field will have the outer product of the individual
        power spectra as its global power spectrum.

        Parameters
        ----------
Martin Reinecke's avatar
Martin Reinecke committed
434 435
        target_subdomain : :class:`~nifty7.domain.Domain`, \
                           :class:`~nifty7.domain_tuple.DomainTuple`
Lukas Platz's avatar
Lukas Platz committed
436 437 438 439
            Target subdomain on which the correlation structure defined
            in this call should hold.
        fluctuations_{mean,stddev} : float
            Total spectral energy -> Amplitude of the fluctuations
440
        flexibility_{mean,stddev} : float
441
            Amplitude of the non-power-law power spectrum component
442
        asperity_{mean,stddev} : float
443
            Roughness of the non-power-law power spectrum component
444
            Used to accommodate single frequency peaks
Lukas Platz's avatar
Lukas Platz committed
445 446 447 448
        loglogavgslope_{mean,stddev} : float
            Power law component exponent
        prefix : string
            prefix of the power spectrum parameter domain names
Philipp Arras's avatar
Philipp Arras committed
449 450 451
        index : int
            Position target_subdomain in the final total domain of the
            correlated field operator.
452 453
        dofdex : np.array, optional
            An integer array specifying the power spectrum models used if
Philipp Arras's avatar
Philipp Arras committed
454
            total_N > 1. It needs to have length of total_N. If total_N=3 and
455
            dofdex=[0,0,1], that means that two power spectrum models are
456
            instantiated; the first one is used for the first and second
457 458 459
            field model and the second one is used for the third field model.
            *If not given*, use the same power spectrum model for all
            constructed field models.
Martin Reinecke's avatar
Martin Reinecke committed
460 461
        harmonic_partner : :class:`~nifty7.domain.Domain`, \
                           :class:`~nifty7.domain_tuple.DomainTuple`
Lukas Platz's avatar
Lukas Platz committed
462 463
            In which harmonic space to define the power spectrum
        """
Philipp Frank's avatar
Philipp Frank committed
464
        if harmonic_partner is None:
465
            harmonic_partner = target_subdomain.get_default_codomain()
Philipp Frank's avatar
Fixup  
Philipp Frank committed
466
        else:
467 468
            target_subdomain.check_codomain(harmonic_partner)
            harmonic_partner.check_codomain(target_subdomain)
469

Philipp Haim's avatar
Philipp Haim committed
470 471
        if dofdex is None:
            dofdex = np.full(self._total_N, 0)
472 473
        elif len(dofdex) != self._total_N:
            raise ValueError("length of dofdex needs to match total_N")
Philipp Haim's avatar
Philipp Haim committed
474

Philipp Haim's avatar
Philipp Haim committed
475 476
        if self._total_N > 0:
            N = max(dofdex) + 1
477
            target_subdomain = makeDomain((UnstructuredDomain(N), target_subdomain))
Philipp Haim's avatar
Philipp Haim committed
478
        else:
Philipp Haim's avatar
Philipp Haim committed
479
            N = 0
480
            target_subdomain = makeDomain(target_subdomain)
Philipp Arras's avatar
Philipp Arras committed
481
        prefix = str(prefix)
482
        # assert isinstance(target_subdomain[space], (RGSpace, HPSpace, GLSpace)
Philipp Arras's avatar
Philipp Arras committed
483

484
        ve = "{0}_mean and {0}_stddev must be strictly positive (or both zero to disable {0})"
485 486 487 488 489
        if fluctuations_mean > 0. and fluctuations_stddev > 0.:
            fluct = LognormalTransform(fluctuations_mean, fluctuations_stddev,
                                       self._prefix + prefix + 'fluctuations', N)
        else:
            raise ValueError(ve.format("fluctuations"))
490
        if flexibility_mean == 0. and flexibility_stddev == 0.:
491 492
            if asperity_mean != 0. or asperity_stddev != 0.:
                raise ValueError("flexibility may not be disabled on its own")
493 494
            flex = None
        elif flexibility_mean > 0. and flexibility_stddev > 0.:
495 496 497 498
            flex = LognormalTransform(flexibility_mean, flexibility_stddev,
                                      self._prefix + prefix + 'flexibility', N)
        else:
            raise ValueError(ve.format("flexibility"))
499
        if asperity_mean == 0. and asperity_stddev == 0.:
500 501
            asp = None
        elif asperity_mean > 0. and asperity_stddev > 0.:
502 503 504 505
            asp = LognormalTransform(asperity_mean, asperity_stddev,
                                     self._prefix + prefix + 'asperity', N)
        else:
            raise ValueError(ve.format("asperity"))
506 507 508
        avgsl = NormalTransform(loglogavgslope_mean, loglogavgslope_stddev,
                                self._prefix + prefix + 'loglogavgslope', N)

Philipp Arras's avatar
Philipp Arras committed
509
        amp = _Amplitude(PowerSpace(harmonic_partner), fluct, flex, asp, avgsl,
510
                         self._azm, target_subdomain[-1].total_volume,
511
                         self._prefix + prefix + 'spectrum', dofdex)
Philipp Haim's avatar
Philipp Haim committed
512

513 514
        if index is not None:
            self._a.insert(index, amp)
515
            self._target_subdomains.insert(index, target_subdomain)
516 517
        else:
            self._a.append(amp)
518
            self._target_subdomains.append(target_subdomain)
519

Philipp Arras's avatar
Philipp Arras committed
520 521 522 523 524 525 526 527 528 529
    def finalize(self, prior_info=100):
        """Finishes model construction process and returns the constructed
        operator.

        Parameters
        ----------
        prior_info : integer
            How many prior samples to draw for property verification statistics
            If zero, skips calculating and displaying statistics.
        """
Philipp Haim's avatar
Philipp Haim committed
530
        n_amplitudes = len(self._a)
Philipp Haim's avatar
Philipp Haim committed
531
        if self._total_N > 0:
Philipp Arras's avatar
Philipp Arras committed
532 533 534
            hspace = makeDomain(
                [UnstructuredDomain(self._total_N)] +
                [dd.target[-1].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
535 536
            spaces = tuple(range(1, n_amplitudes + 1))
            amp_space = 1
Philipp Haim's avatar
Philipp Haim committed
537 538
        else:
            hspace = makeDomain(
Philipp Arras's avatar
Philipp Arras committed
539
                [dd.target[0].harmonic_partner for dd in self._a])
Philipp Haim's avatar
Philipp Haim committed
540
            spaces = tuple(range(n_amplitudes))
Philipp Haim's avatar
Philipp Haim committed
541
            amp_space = 0
542

Martin Reinecke's avatar
Martin Reinecke committed
543
        expander = ContractionOperator(hspace, spaces=spaces).adjoint
Philipp Frank's avatar
fixup  
Philipp Frank committed
544
        azm = expander @ self._azm
545

546
        ht = HarmonicTransformOperator(hspace,
547
                                       self._target_subdomains[0][amp_space],
Martin Reinecke's avatar
Martin Reinecke committed
548
                                       space=spaces[0])
549
        for i in range(1, n_amplitudes):
550
            ht = HarmonicTransformOperator(ht.target,
551
                                           self._target_subdomains[i][amp_space],
552 553 554 555 556
                                           space=spaces[i]) @ ht
        a = []
        for ii in range(n_amplitudes):
            co = ContractionOperator(hspace, spaces[:ii] + spaces[ii + 1:])
            pp = self._a[ii].target[amp_space]
Philipp Haim's avatar
Philipp Haim committed
557
            pd = PowerDistributor(co.target, pp, amp_space)
558 559
            a.append(co.adjoint @ pd @ self._a[ii])
        corr = reduce(mul, a)
Philipp Arras's avatar
Philipp Arras committed
560
        op = ht(azm*corr*ducktape(hspace, None, self._prefix + 'xi'))
Philipp Arras's avatar
Philipp Arras committed
561

562 563
        if self._offset_mean is not None:
            offset = self._offset_mean
564 565 566 567 568 569 570
            # Deviations from this offset must not be considered here as they
            # are learned by the zeromode
            if isinstance(offset, (Field, MultiField)):
                op = Adder(offset) @ op
            else:
                offset = float(offset)
                op = Adder(full(op.target, offset)) @ op
571
        self.statistics_summary(prior_info)
572 573
        return op

574 575 576 577 578 579
    def statistics_summary(self, prior_info):
        from ..sugar import from_random

        if prior_info == 0:
            return

580 581
        lst = [('Offset amplitude', self.amplitude_total_offset),
               ('Total fluctuation amplitude', self.total_fluctuation)]
582
        namps = len(self._a)
583 584 585 586 587 588 589 590
        if namps > 1:
            for ii in range(namps):
                lst.append(('Slice fluctuation (space {})'.format(ii),
                            self.slice_fluctuation(ii)))
                lst.append(('Average fluctuation (space {})'.format(ii),
                            self.average_fluctuation(ii)))

        for kk, op in lst:
591 592
            sc = StatCalculator()
            for _ in range(prior_info):
593
                sc.add(op(from_random(op.domain, 'normal')))
Martin Reinecke's avatar
merge  
Martin Reinecke committed
594
            mean = sc.mean.val
Martin Reinecke's avatar
Martin Reinecke committed
595
            stddev = sc.var.ptw("sqrt").val
596
            for m, s in zip(mean.flatten(), stddev.flatten()):
597
                logger.info('{}: {:.02E} ± {:.02E}'.format(kk, m, s))
598 599 600

    def moment_slice_to_average(self, fluctuations_slice_mean, nsamples=1000):
        fluctuations_slice_mean = float(fluctuations_slice_mean)
601 602 603
        if not fluctuations_slice_mean > 0:
            msg = "fluctuations_slice_mean must be greater zero; got {!r}"
            raise ValueError(msg.format(fluctuations_slice_mean))
604
        from ..sugar import from_random
605 606
        scm = 1.
        for a in self._a:
Martin Reinecke's avatar
Martin Reinecke committed
607
            op = a.fluctuation_amplitude*self._azm.ptw("reciprocal")
608
            res = np.array([op(from_random(op.domain, 'normal')).val
609 610
                            for _ in range(nsamples)])
            scm *= res**2 + 1.
611
        return fluctuations_slice_mean/np.mean(np.sqrt(scm))
612

Philipp Arras's avatar
Philipp Arras committed
613
    @property
Philipp Haim's avatar
Philipp Haim committed
614
    def normalized_amplitudes(self):
615
        """Returns the power spectrum operators used in the model"""
616
        return self._a
Philipp Arras's avatar
Philipp Arras committed
617

Philipp Haim's avatar
Philipp Haim committed
618 619 620 621 622 623 624
    @property
    def amplitude(self):
        if len(self._a) > 1:
            s = ('If more than one spectrum is present in the model,',
                 ' no unique set of amplitudes exist because only the',
                 ' relative scale is determined.')
            raise NotImplementedError(s)
Philipp Haim's avatar
Fix  
Philipp Haim committed
625 626
        dom = self._a[0].target
        expand = ContractionOperator(dom, len(dom)-1).adjoint
Philipp Haim's avatar
Philipp Haim committed
627 628
        return self._a[0]*(expand @ self.amplitude_total_offset)

629 630 631
    @property
    def amplitude_total_offset(self):
        return self._azm
Philipp Arras's avatar
Philipp Arras committed
632 633

    @property
634
    def total_fluctuation(self):
635
        """Returns operator which acts on prior or posterior samples"""
636
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
637
            raise NotImplementedError
638
        if len(self._a) == 1:
639
            return self.average_fluctuation(0)
640 641
        q = 1.
        for a in self._a:
Martin Reinecke's avatar
Martin Reinecke committed
642
            fl = a.fluctuation_amplitude*self._azm.ptw("reciprocal")
Philipp Arras's avatar
Philipp Arras committed
643
            q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Martin Reinecke's avatar
Martin Reinecke committed
644
        return (Adder(full(q.target, -1.)) @ q).ptw("sqrt")*self._azm
645

Philipp Arras's avatar
Philipp Arras committed
646
    def slice_fluctuation(self, space):
647
        """Returns operator which acts on prior or posterior samples"""
648
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
649
            raise NotImplementedError
650
        if space >= len(self._a):
651
            raise ValueError("invalid space specified; got {!r}".format(space))
652
        if len(self._a) == 1:
653
            return self.average_fluctuation(0)
654 655
        q = 1.
        for j in range(len(self._a)):
Martin Reinecke's avatar
Martin Reinecke committed
656
            fl = self._a[j].fluctuation_amplitude*self._azm.ptw("reciprocal")
657
            if j == space:
Philipp Arras's avatar
Philipp Arras committed
658
                q = q*fl**2
659
            else:
Philipp Arras's avatar
Philipp Arras committed
660
                q = q*(Adder(full(fl.target, 1.)) @ fl**2)
Martin Reinecke's avatar
Martin Reinecke committed
661
        return q.ptw("sqrt")*self._azm
Philipp Arras's avatar
Philipp Arras committed
662 663

    def average_fluctuation(self, space):
664
        """Returns operator which acts on prior or posterior samples"""
665
        if len(self._a) == 0:
Philipp Arras's avatar
Philipp Arras committed
666
            raise NotImplementedError
667
        if space >= len(self._a):
668
            raise ValueError("invalid space specified; got {!r}".format(space))
669
        if len(self._a) == 1:
Philipp Haim's avatar
Philipp Haim committed
670 671
            return self._a[0].fluctuation_amplitude
        return self._a[space].fluctuation_amplitude
672

673 674
    @staticmethod
    def offset_amplitude_realized(samples):
Philipp Haim's avatar
Philipp Haim committed
675
        spaces = _structured_spaces(samples[0].domain)
676 677
        res = 0.
        for s in samples:
Philipp Haim's avatar
Philipp Haim committed
678
            res = res + s.mean(spaces)**2
Philipp Haim's avatar
Philipp Haim committed
679 680
        res = res/len(samples)
        return np.sqrt(res if np.isscalar(res) else res.val)
Philipp Arras's avatar
Philipp Arras committed
681

682 683 684 685 686 687 688 689
    @staticmethod
    def total_fluctuation_realized(samples):
        return _total_fluctuation_realized(samples)

    @staticmethod
    def slice_fluctuation_realized(samples, space):
        """Computes slice fluctuations from collection of field (defined in signal
        space) realizations."""
Philipp Haim's avatar
Philipp Haim committed
690 691
        spaces = _structured_spaces(samples[0].domain)
        if space >= len(spaces):
692
            raise ValueError("invalid space specified; got {!r}".format(space))
Philipp Haim's avatar
Philipp Haim committed
693
        if len(spaces) == 1:
694
            return _total_fluctuation_realized(samples)
Philipp Haim's avatar
Philipp Haim committed
695
        space = space + spaces[0]
Philipp Arras's avatar
Philipp Arras committed
696
        res1, res2 = 0., 0.
697
        for s in samples:
Philipp Frank's avatar
fixes  
Philipp Frank committed
698 699 700 701
            res1 = res1 + s**2
            res2 = res2 + s.mean(space)**2
        res1 = res1/len(samples)
        res2 = res2/len(samples)
Philipp Haim's avatar
Philipp Haim committed
702
        res = res1.mean(spaces) - res2.mean(spaces[:-1])
Philipp Haim's avatar
Philipp Haim committed
703
        return np.sqrt(res if np.isscalar(res) else res.val)
Philipp Frank's avatar
fixes  
Philipp Frank committed
704

Philipp Arras's avatar
Philipp Arras committed
705
    @staticmethod
706 707 708
    def average_fluctuation_realized(samples, space):
        """Computes average fluctuations from collection of field (defined in signal
        space) realizations."""
Philipp Haim's avatar
Philipp Haim committed
709 710
        spaces = _structured_spaces(samples[0].domain)
        if space >= len(spaces):
711
            raise ValueError("invalid space specified; got {!r}".format(space))
Philipp Haim's avatar
Philipp Haim committed
712
        if len(spaces) == 1:
713
            return _total_fluctuation_realized(samples)
Philipp Haim's avatar
Philipp Haim committed
714 715 716
        space = space + spaces[0]
        sub_spaces = set(spaces)
        sub_spaces.remove(space)
Philipp Arras's avatar
Philipp Arras committed
717
        # Domain containing domain[space] and domain[0] iff total_N>0
Philipp Haim's avatar
Philipp Haim committed
718
        sub_dom = makeDomain([samples[0].domain[ind]
Philipp Arras's avatar
Philipp Arras committed
719
                              for ind in (set([0])-set(spaces)) | set([space])])
Philipp Haim's avatar
Philipp Haim committed
720
        co = ContractionOperator(sub_dom, len(sub_dom)-1)
721
        size = co.domain.size/co.target.size
Philipp Arras's avatar
Philipp Arras committed
722 723
        res = 0.
        for s in samples:
Philipp Haim's avatar
Philipp Haim committed
724
            r = s.mean(sub_spaces)
725
            res = res + (r - co.adjoint(co(r)/size))**2
Philipp Haim's avatar
Philipp Haim committed
726
        res = res.mean(spaces[0])/len(samples)
Philipp Haim's avatar
Philipp Haim committed
727
        return np.sqrt(res if np.isscalar(res) else res.val)