test_rg_space.py 5.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

Jait Dixit's avatar
Jait Dixit committed
19
20
21
22
23
from __future__ import division

import unittest
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from d2o import distributed_data_object

26
from numpy.testing import assert_, assert_equal, assert_almost_equal
Jait Dixit's avatar
Jait Dixit committed
27
28
from nifty import RGSpace
from test.common import expand
Martin Reinecke's avatar
Martin Reinecke committed
29
from itertools import product
Jait Dixit's avatar
Jait Dixit committed
30

Martin Reinecke's avatar
Martin Reinecke committed
31
# [shape, distances, harmonic, expected]
32
CONSTRUCTOR_CONFIGS = [
Martin Reinecke's avatar
Martin Reinecke committed
33
        [(8,), None, False,
Jait Dixit's avatar
Jait Dixit committed
34
35
36
37
38
39
40
            {
                'shape': (8,),
                'distances': (0.125,),
                'harmonic': False,
                'dim': 8,
                'total_volume': 1.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
41
        [(8,), None, True,
Jait Dixit's avatar
Jait Dixit committed
42
43
44
45
46
47
48
            {
                'shape': (8,),
                'distances': (1.0,),
                'harmonic': True,
                'dim': 8,
                'total_volume': 8.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
49
        [(8,), (12,), True,
Jait Dixit's avatar
Jait Dixit committed
50
51
52
53
54
55
56
            {
                'shape': (8,),
                'distances': (12.0,),
                'harmonic': True,
                'dim': 8,
                'total_volume': 96.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
57
        [(11, 11), None, False,
Jait Dixit's avatar
Jait Dixit committed
58
59
60
61
62
63
64
            {
                'shape': (11, 11),
                'distances': (1/11, 1/11),
                'harmonic': False,
                'dim': 121,
                'total_volume': 1.0
            }],
Martin Reinecke's avatar
Martin Reinecke committed
65
        [(11, 11), (1.3, 1.3), True,
Jait Dixit's avatar
Jait Dixit committed
66
67
68
69
70
71
72
73
74
75
76
            {
                'shape': (11, 11),
                'distances': (1.3, 1.3),
                'harmonic': True,
                'dim': 121,
                'total_volume': 204.49
            }]

    ]


77
def get_distance_array_configs():
Martin Reinecke's avatar
Martin Reinecke committed
78
    # for RGSpace(shape=(4, 4), distances=None)
Martin Reinecke's avatar
Martin Reinecke committed
79
80
81
82
83
84
85
    cords_0 = np.ogrid[0:4, 0:4]
    da_0 = ((cords_0[0] - 4 // 2) * 0.25)**2
    da_0 = np.fft.ifftshift(da_0)
    temp = ((cords_0[1] - 4 // 2) * 0.25)**2
    temp = np.fft.ifftshift(temp)
    da_0 = da_0 + temp
    da_0 = np.sqrt(da_0)
86
    return [
Martin Reinecke's avatar
Martin Reinecke committed
87
        [(4, 4),  None, da_0],
88
89
90
91
        ]


def get_weight_configs():
Martin Reinecke's avatar
Martin Reinecke committed
92
93
94
95
96
97
98
99
100
101
102
    np.random.seed(42)
    # power 1
    w_0_x = np.random.rand(32, 12, 6)
    # for RGSpace(shape=(11,11), distances=None, harmonic=False)
    w_0_res = w_0_x * (1/11 * 1/11)
    # for RGSpace(shape=(11, 11), distances=(1.3,1.3), harmonic=False)
    w_1_res = w_0_x * (1.3 * 1.3)
    # for RGSpace(shape=(11,11), distances=None, harmonic=True)
    w_2_res = w_0_x * (1.0 * 1.0)
    # for RGSpace(shape=(11,11), distances=(1.3, 1,3), harmonic=True)
    w_3_res = w_0_x * (1.3 * 1.3)
103
    return [
Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108
109
110
111
        [(11, 11), None, False, w_0_x, 1, None, False, w_0_res],
        [(11, 11), None, False, w_0_x.copy(), 1, None,  True, w_0_res],
        [(11, 11), (1.3, 1.3), False, w_0_x, 1, None, False, w_1_res],
        [(11, 11), (1.3, 1.3), False, w_0_x.copy(), 1, None,  True, w_1_res],
        [(11, 11), None, True, w_0_x, 1, None, False, w_2_res],
        [(11, 11), None, True, w_0_x.copy(), 1, None,  True, w_2_res],
        [(11, 11), (1.3, 1.3), True, w_0_x, 1, None, False, w_3_res],
        [(11, 11), (1.3, 1.3), True, w_0_x.copy(), 1, None,  True, w_3_res]
112
113
114
        ]


Jait Dixit's avatar
Jait Dixit committed
115
class RGSpaceInterfaceTests(unittest.TestCase):
Martin Reinecke's avatar
Martin Reinecke committed
116
    @expand([['distances', tuple]])
117
    def test_property_ret_type(self, attribute, expected_type):
118
        x = RGSpace(1)
Jait Dixit's avatar
Jait Dixit committed
119
120
121
122
        assert_(isinstance(getattr(x, attribute), expected_type))


class RGSpaceFunctionalityTests(unittest.TestCase):
123
    @expand(CONSTRUCTOR_CONFIGS)
Martin Reinecke's avatar
Martin Reinecke committed
124
    def test_constructor(self, shape, distances,
Martin Reinecke's avatar
Martin Reinecke committed
125
                         harmonic, expected):
Martin Reinecke's avatar
Martin Reinecke committed
126
        x = RGSpace(shape, distances, harmonic)
Jait Dixit's avatar
Jait Dixit committed
127
128
129
        for key, value in expected.iteritems():
            assert_equal(getattr(x, key), value)

130
    @expand(product([(10,), (11,), (1, 1), (4, 4), (5, 7), (8, 12), (7, 16),
131
                     (4, 6, 8), (17, 5, 3)]))
Martin Reinecke's avatar
Martin Reinecke committed
132
    def test_hermitianize_inverter(self, shape):
133
        r = RGSpace(shape, harmonic=True)
Theo Steininger's avatar
Theo Steininger committed
134
135
        v = distributed_data_object(global_shape=shape, dtype=np.complex128)
        v[:] = np.random.random(shape) + 1j*np.random.random(shape)
136
        inverted = r.hermitianize_inverter(v, axes=range(len(shape)))
137

138
139
        # test hermitian flipping of `inverted`
        it = np.nditer(v, flags=['multi_index'])
Martin Reinecke's avatar
Martin Reinecke committed
140
141
142
143
        while not it.finished:
            i1 = it.multi_index
            i2 = []
            for i in range(len(i1)):
Martin Reinecke's avatar
Martin Reinecke committed
144
                i2.append(v.shape[i]-i1[i] if i1[i] > 0 else 0)
Martin Reinecke's avatar
Martin Reinecke committed
145
            i2 = tuple(i2)
146
            assert_almost_equal(inverted[i1], v[i2])
Martin Reinecke's avatar
Martin Reinecke committed
147
            it.iternext()
Jait Dixit's avatar
Jait Dixit committed
148

149
    @expand(get_distance_array_configs())
Martin Reinecke's avatar
Martin Reinecke committed
150
151
    def test_distance_array(self, shape, distances, expected):
        r = RGSpace(shape=shape, distances=distances)
152
        assert_almost_equal(r.get_distance_array('not'), expected)
Jait Dixit's avatar
Jait Dixit committed
153

154
155
156
157
158
159
160
161
    @expand(get_weight_configs())
    def test_weight(self, shape, distances, harmonic, x, power, axes,
                    inplace, expected):
        r = RGSpace(shape=shape, distances=distances, harmonic=harmonic)
        res = r.weight(x, power, axes, inplace)
        assert_almost_equal(res, expected)
        if inplace:
            assert_(x is res)