field.py 30.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
20
21
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
22
23
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
24

25
from d2o import distributed_data_object,\
26
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
27

28
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
29

30
from nifty.domain_object import DomainObject
31

32
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
33

csongor's avatar
csongor committed
34
import nifty.nifty_utilities as utilities
35
36
from nifty.random import Random

csongor's avatar
csongor committed
37

Jait Dixit's avatar
Jait Dixit committed
38
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
39
    # ---Initialization methods---
40

41
    def __init__(self, domain=None, val=None, dtype=None,
42
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
43

44
        self.domain = self._parse_domain(domain=domain, val=val)
45
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
46

Theo Steininger's avatar
Theo Steininger committed
47
        self.dtype = self._infer_dtype(dtype=dtype,
48
                                       val=val)
49

50
51
52
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
53

54
55
56
57
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
58

59
    def _parse_domain(self, domain, val=None):
60
        if domain is None:
61
62
63
64
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
65
        elif isinstance(domain, DomainObject):
66
            domain = (domain,)
67
68
69
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
70
        for d in domain:
71
            if not isinstance(d, DomainObject):
72
73
                raise TypeError(
                    "Given domain contains something that is not a "
74
                    "DomainObject instance.")
csongor's avatar
csongor committed
75
76
        return domain

Theo Steininger's avatar
Theo Steininger committed
77
78
79
80
81
82
83
84
85
86
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
87

88
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
89
        if dtype is None:
90
            try:
91
                dtype = val.dtype
92
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
93
94
95
                try:
                    if val is None:
                        raise TypeError
96
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
97
                except(TypeError):
98
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
99
        else:
100
            dtype = np.dtype(dtype)
101

Theo Steininger's avatar
Theo Steininger committed
102
        return dtype
103

104
105
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
106
            if isinstance(val, distributed_data_object):
107
                distribution_strategy = val.distribution_strategy
108
            elif isinstance(val, Field):
109
                distribution_strategy = val.distribution_strategy
110
            else:
111
                self.logger.debug("distribution_strategy set to default!")
112
                distribution_strategy = gc['default_distribution_strategy']
113
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
114
115
116
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
117
        return distribution_strategy
118
119

    # ---Factory methods---
120

121
    @classmethod
122
    def from_random(cls, random_type, domain=None, dtype=None,
123
                    distribution_strategy=None, **kwargs):
124
        # create a initially empty field
125
        f = cls(domain=domain, dtype=dtype,
126
                distribution_strategy=distribution_strategy)
127
128
129
130
131
132
133

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
134
        # extract the distributed_data_object from f and apply the appropriate
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
162
        else:
163
164
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
165

166
        return random_arguments
csongor's avatar
csongor committed
167

168
169
    # ---Powerspectral methods---

170
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None, binbounds=None,
171
                      decompose_power=False):
Theo Steininger's avatar
Theo Steininger committed
172
        # check if all spaces in `self.domain` are either harmonic or
173
174
175
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
176
                self.logger.info(
177
                    "Field has a space in `domain` which is neither "
178
179
180
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
181
182
183
184
185
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
186
187
188
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
189
190

        if len(spaces) == 0:
191
192
            raise ValueError(
                "No space for analysis specified.")
193
        elif len(spaces) > 1:
194
195
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
196
197
198
199

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
200
201
            raise ValueError(
                "The analyzed space must be harmonic.")
202

203
204
205
206
207
208
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

209
210
211
212
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

213
214
        harmonic_partner = self.domain[space_index]
        power_domain = PowerSpace(harmonic_partner=harmonic_partner,
215
                                  distribution_strategy=distribution_strategy,
216
                                  logarithmic=logarithmic, nbin=nbin, binbounds=binbounds)
217

218
        # extract pindex and rho from power_domain
219
220
        pindex = power_domain.pindex
        rho = power_domain.rho
221

222
        if decompose_power:
223
            hermitian_part, anti_hermitian_part = \
224
                harmonic_partner.hermitian_decomposition(
225
226
227
228
229
230
231
232
233
234
235
236
237
238
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
239
240
241
242
243
244
245
246
247
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

248
        if decompose_power:
249
250
251
252
            result_dtype = np.complex
        else:
            result_dtype = np.float

253
254
        result_field = self.copy_empty(
                   domain=result_domain,
255
                   dtype=result_dtype,
256
                   distribution_strategy=power_spectrum.distribution_strategy)
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
285
            raise ValueError("pindex's distribution strategy must be "
286
287
288
289
290
291
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
292
                    "A slicing distributor shall not be reshaped to "
293
294
295
296
297
298
299
300
301
302
303
304
305
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

306
    def power_synthesize(self, spaces=None, real_power=True,
307
                         real_signal=False, mean=None, std=None):
308

309
310
311
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
312
313
314
        if spaces is None:
            spaces = range(len(self.domain))

315
316
317
318
319
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
320
321
322

        # create the result domain
        result_domain = list(self.domain)
323
324
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
325
326
            harmonic_partner = power_space.harmonic_partner
            result_domain[power_space_index] = harmonic_partner
327
328
329

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
330
        if real_power:
331
            result_list = [None]
332
333
        else:
            result_list = [None, None]
334

335
336
        result_list = [self.__class__.from_random(
                             'normal',
337
338
339
                             mean=mean,
                             std=std,
                             domain=result_domain,
340
                             dtype=np.complex,
341
                             distribution_strategy=self.distribution_strategy)
342
343
344
345
346
347
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

        spec = self.val.get_full_data()
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

366
        if real_signal:
367
            for power_space_index in spaces:
368
369
                harmonic_partner = result_domain[power_space_index]
                result_val_list = [harmonic_partner.hermitian_decomposition(
370
371
372
373
374
                                    result_val,
                                    axes=result.domain_axes[power_space_index],
                                    preserve_gaussian_variance=True)[0]
                                   for (result, result_val)
                                   in zip(result_list, result_val_list)]
375
376
377
378
379
380
381

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
382
        else:
383
384
385
386
387
388
            result = result_list[0] + 1j*result_list[1]

        return result

    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
389
390
391

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
392
        pindex = power_space.pindex
393
394
395
396
397
398
399
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
400
            self.logger.warn(
401
                "The distribution_stragey of pindex does not fit the "
402
403
404
405
406
407
408
409
410
411
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
412
413
        local_rescaler = spec[local_blow_up]
        return local_rescaler
414

Theo Steininger's avatar
Theo Steininger committed
415
    # ---Properties---
416

Theo Steininger's avatar
Theo Steininger committed
417
    def set_val(self, new_val=None, copy=False):
418
419
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
420
421
            new_val = new_val.copy()
        self._val = new_val
422
        return self
csongor's avatar
csongor committed
423

424
    def get_val(self, copy=False):
425
426
427
        if self._val is None:
            self.set_val(None)

428
        if copy:
Theo Steininger's avatar
Theo Steininger committed
429
            return self._val.copy()
430
        else:
Theo Steininger's avatar
Theo Steininger committed
431
            return self._val
csongor's avatar
csongor committed
432

Theo Steininger's avatar
Theo Steininger committed
433
434
    @property
    def val(self):
435
        return self.get_val(copy=False)
csongor's avatar
csongor committed
436

Theo Steininger's avatar
Theo Steininger committed
437
438
    @val.setter
    def val(self, new_val):
439
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
440

441
442
    @property
    def shape(self):
443
        shape_tuple = tuple(sp.shape for sp in self.domain)
444
445
446
447
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
448

449
        return global_shape
csongor's avatar
csongor committed
450

451
452
    @property
    def dim(self):
453
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
454
455
456
457
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
458

459
460
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
461
462
463
464
465
466
467
468
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
469
        try:
Theo Steininger's avatar
Theo Steininger committed
470
            return reduce(lambda x, y: x * y, volume_tuple)
471
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
472
            return 0.
473

Theo Steininger's avatar
Theo Steininger committed
474
    # ---Special unary/binary operations---
475

csongor's avatar
csongor committed
476
477
478
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
479
480
        else:
            dtype = np.dtype(dtype)
481

482
483
        casted_x = x

484
        for ind, sp in enumerate(self.domain):
485
            casted_x = sp.pre_cast(casted_x,
486
487
488
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
489
490

        for ind, sp in enumerate(self.domain):
491
492
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
493

494
        return casted_x
csongor's avatar
csongor committed
495

Theo Steininger's avatar
Theo Steininger committed
496
    def _actual_cast(self, x, dtype=None):
497
        if isinstance(x, Field):
csongor's avatar
csongor committed
498
499
500
501
502
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

503
        return_x = distributed_data_object(
504
505
506
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
507
508
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
509

510
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
511
        copied_val = self.get_val(copy=True)
512
513
514
515
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
516
517
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
518

519
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
520
521
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
522
        else:
Theo Steininger's avatar
Theo Steininger committed
523
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
524

Theo Steininger's avatar
Theo Steininger committed
525
526
527
528
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
529

530
531
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
532

Theo Steininger's avatar
Theo Steininger committed
533
534
535
536
537
538
539
540
541
542
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
543
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
544
545
546
547
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
548
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
549
        return new_field
csongor's avatar
csongor committed
550

Theo Steininger's avatar
Theo Steininger committed
551
552
553
554
555
556
557
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
558
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
559
560
561
562
563
564
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
565
        if inplace:
csongor's avatar
csongor committed
566
567
568
569
            new_field = self
        else:
            new_field = self.copy_empty()

570
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
571

572
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
573
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
574
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
575

576
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
577
578
579
580
581
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
582
583

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
584
585
        return new_field

586
587
588
589
590
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
591

Martin Reinecke's avatar
Martin Reinecke committed
592
        # Compute the dot respecting the fact of discrete/continuous spaces
Theo Steininger's avatar
Theo Steininger committed
593
594
595
596
597
        if bare:
            y = self
        else:
            y = self.weight(power=1)

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
613

614
    def norm(self, q=2):
csongor's avatar
csongor committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
629
        if q == 2:
630
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
631
        else:
632
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

649
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
650
        new_val = new_val.conjugate()
651
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
652
653
654

        return work_field

Theo Steininger's avatar
Theo Steininger committed
655
    # ---General unary/contraction methods---
656

Theo Steininger's avatar
Theo Steininger committed
657
658
    def __pos__(self):
        return self.copy()
659

Theo Steininger's avatar
Theo Steininger committed
660
661
662
663
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
664
665
        return return_field

Theo Steininger's avatar
Theo Steininger committed
666
667
668
669
670
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
671

672
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
673
674
675
676
677
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
678

679
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
680
681

        try:
Theo Steininger's avatar
Theo Steininger committed
682
            axes_list = reduce(lambda x, y: x+y, axes_list)
683
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
684
            axes_list = ()
csongor's avatar
csongor committed
685

Theo Steininger's avatar
Theo Steininger committed
686
687
688
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
689

Theo Steininger's avatar
Theo Steininger committed
690
691
692
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
693
        else:
Theo Steininger's avatar
Theo Steininger committed
694
695
696
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
697

Theo Steininger's avatar
Theo Steininger committed
698
699
700
701
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
702

703
704
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
705

706
707
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
708

709
710
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
711

712
713
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
714

715
716
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
717

718
719
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
720

721
722
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
723

724
725
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
726

727
728
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
729

730
731
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
732

733
734
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
735

Theo Steininger's avatar
Theo Steininger committed
736
    # ---General binary methods---
csongor's avatar
csongor committed
737

Theo Steininger's avatar
Theo Steininger committed
738
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
739
        # if other is a field, make sure that the domains match
740
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
741
742
743
744
745
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
746
747
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
748
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
749

Theo Steininger's avatar
Theo Steininger committed
750
751
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
752
753
754
755

        if inplace:
            working_field = self
        else:
756
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
757

Theo Steininger's avatar
Theo Steininger committed
758
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
759
760
761
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
762
        return self._binary_helper(other, op='__add__')
763

764
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
765
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
766
767

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
768
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
769
770

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
771
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
772
773

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
774
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
775
776

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
777
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
778
779

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
780
        return self._binary_helper(other, op='__mul__')
781

782
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
783
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
784
785

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
786
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
787
788

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
789
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
790
791

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
792
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
793
794

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
795
        return self._binary_helper(other, op='__idiv__', inplace=True)
796

csongor's avatar
csongor committed
797
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
798
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
799
800

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
801
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
802
803

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
804
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
805
806

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
807
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
808
809

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
810
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
811
812
813
814
815

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
816
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
817
818
819
820
821

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
822
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
823
824

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
825
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
826
827

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
828
829
830
831
832
833
834
835
836
837
838
839
840
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
841

Jait Dixit's avatar
Jait Dixit committed
842
843
844
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
845
846
847
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
848
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
849

Theo Steininger's avatar
Theo Steininger committed
850
851
852
853
        if self._val is None:
            ret_dict = {}
        else:
            ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
854
855
856
857
858
859
860

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
861
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
862
863
864
865
866
867
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
868
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
869
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
870
871
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
872
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
Theo Steininger's avatar
Theo Steininger committed
873
874
875
876
877
878

        try:
            new_field._val = repository.get('val', hdf5_group)
        except(KeyError):
            new_field._val = None

Theo Steininger's avatar
Theo Steininger committed
879
880
881
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
882
883

        return new_field
884

Theo Steininger's avatar
Theo Steininger committed
885

886
class EmptyField(Field):
csongor's avatar
csongor committed
887
888
    def __init__(self):
        pass