scipy_minimizer.py 5.38 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15 16 17 18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
stage 1  
Martin Reinecke committed
19
from __future__ import division
Martin Reinecke's avatar
Martin Reinecke committed
20 21 22
from .minimizer import Minimizer
from ..field import Field
from .. import dobj
Martin Reinecke's avatar
Martin Reinecke committed
23
from ..logger import logger
24 25 26
from .iteration_controller import IterationController


Martin Reinecke's avatar
Martin Reinecke committed
27 28 29 30 31 32 33 34 35 36 37 38
def _toNdarray(fld):
    return fld.to_global_data().reshape(-1)


def _toFlatNdarray(fld):
    return fld.val.flatten()


def _toField(arr, dom):
    return Field.from_global_data(dom, arr.reshape(dom.shape))


39 40 41 42 43 44
class _MinHelper(object):
    def __init__(self, energy):
        self._energy = energy
        self._domain = energy.position.domain

    def _update(self, x):
Martin Reinecke's avatar
Martin Reinecke committed
45 46
        pos = _toField(x, self._domain)
        if (pos != self._energy.position).any():
47 48 49 50 51 52 53 54
            self._energy = self._energy.at(pos.locked_copy())

    def fun(self, x):
        self._update(x)
        return self._energy.value

    def jac(self, x):
        self._update(x)
Martin Reinecke's avatar
Martin Reinecke committed
55
        return _toFlatNdarray(self._energy.gradient)
56 57 58

    def hessp(self, x, p):
        self._update(x)
Martin Reinecke's avatar
Martin Reinecke committed
59 60
        res = self._energy.curvature(_toField(p, self._domain))
        return _toFlatNdarray(res)
Martin Reinecke's avatar
Martin Reinecke committed
61 62 63 64 65 66 67 68 69 70 71 72 73


class ScipyMinimizer(Minimizer):
    """Scipy-based minimizer

    Parameters
    ----------
    method     : str
        The selected Scipy minimization method.
    options    : dictionary
        A set of custom options for the selected minimizer.
    """

74
    def __init__(self, method, options, need_hessp, bounds):
Martin Reinecke's avatar
Martin Reinecke committed
75 76 77 78 79 80
        super(ScipyMinimizer, self).__init__()
        if not dobj.is_numpy():
            raise NotImplementedError
        self._method = method
        self._options = options
        self._need_hessp = need_hessp
81
        self._bounds = bounds
Martin Reinecke's avatar
Martin Reinecke committed
82 83 84

    def __call__(self, energy):
        import scipy.optimize as opt
85 86 87 88 89 90 91 92
        hlp = _MinHelper(energy)
        energy = None  # drop handle, since we don't need it any more
        bounds = None
        if self._bounds is not None:
            if len(self._bounds) == 2:
                lo = self._bounds[0]
                hi = self._bounds[1]
                bounds = [(lo, hi)]*hlp._energy.position.size
Martin Reinecke's avatar
Martin Reinecke committed
93
            else:
94 95 96 97 98 99
                raise ValueError("unrecognized bounds")

        x = hlp._energy.position.val.flatten()
        hessp = hlp.hessp if self._need_hessp else None
        r = opt.minimize(hlp.fun, x, method=self._method, jac=hlp.jac,
                         hessp=hessp, options=self._options, bounds=bounds)
Martin Reinecke's avatar
Martin Reinecke committed
100
        if not r.success:
101
            logger.error("Problem in Scipy minimization: {}".format(r.message))
102 103
            return hlp._energy, IterationController.ERROR
        return hlp._energy, IterationController.CONVERGED
Martin Reinecke's avatar
Martin Reinecke committed
104 105


106
def NewtonCG(xtol, maxiter, disp=False):
Martin Reinecke's avatar
Martin Reinecke committed
107 108 109 110 111 112
    """Returns a ScipyMinimizer object carrying out the Newton-CG algorithm.

    See Also
    --------
    ScipyMinimizer
    """
Martin Reinecke's avatar
fix  
Martin Reinecke committed
113
    options = {"xtol": xtol, "maxiter": maxiter, "disp": disp}
114
    return ScipyMinimizer("Newton-CG", options, True, None)
Martin Reinecke's avatar
Martin Reinecke committed
115 116


117
def L_BFGS_B(ftol, gtol, maxiter, maxcor=10, disp=False, bounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
118 119 120 121 122 123
    """Returns a ScipyMinimizer object carrying out the L-BFGS-B algorithm.

    See Also
    --------
    ScipyMinimizer
    """
124
    options = {"ftol": ftol, "gtol": gtol, "maxiter": maxiter,
Martin Reinecke's avatar
fix  
Martin Reinecke committed
125
               "maxcor": maxcor, "disp": disp}
126
    return ScipyMinimizer("L-BFGS-B", options, False, bounds)
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147


class ScipyCG(Minimizer):
    def __init__(self, tol, maxiter):
        super(ScipyCG, self).__init__()
        if not dobj.is_numpy():
            raise NotImplementedError
        self._tol = tol
        self._maxiter = maxiter

    def __call__(self, energy, preconditioner=None):
        from scipy.sparse.linalg import LinearOperator as scipy_linop, cg
        from .quadratic_energy import QuadraticEnergy
        if not isinstance(energy, QuadraticEnergy):
            raise ValueError("need a quadratic energy for CG")

        class mymatvec(object):
            def __init__(self, op):
                self._op = op

            def __call__(self, inp):
Martin Reinecke's avatar
Martin Reinecke committed
148
                return _toNdarray(self._op(_toField(inp, self._op.domain)))
149 150

        op = energy._A
Martin Reinecke's avatar
Martin Reinecke committed
151 152
        b = _toNdarray(energy._b)
        sx = _toNdarray(energy.position)
153 154 155 156 157 158 159 160 161 162
        sci_op = scipy_linop(shape=(op.domain.size, op.target.size),
                             matvec=mymatvec(op))
        prec_op = None
        if preconditioner is not None:
            prec_op = scipy_linop(shape=(op.domain.size, op.target.size),
                                  matvec=mymatvec(preconditioner))
        res, stat = cg(sci_op, b, x0=sx, tol=self._tol, M=prec_op,
                       maxiter=self._maxiter)
        stat = (IterationController.CONVERGED if stat >= 0 else
                IterationController.ERROR)
Martin Reinecke's avatar
Martin Reinecke committed
163
        return energy.at(_toField(res, op.domain)), stat