bench_gridder.py 1.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
from time import time

import matplotlib.pyplot as plt
import numpy as np

import nifty5 as ift

np.random.seed(40)

N0s, a0s, b0s, c0s = [], [], [], []

12
for ii in range(10, 26):
Martin Reinecke's avatar
Martin Reinecke committed
13
14
    nu = 1024
    nv = 1024
Martin Reinecke's avatar
Martin Reinecke committed
15
    N = int(2**ii)
16
    print('N = {}'.format(N))
17
18
19

    uv = np.random.rand(N, 2) - 0.5
    vis = np.random.randn(N) + 1j*np.random.randn(N)
20
21
22

    uvspace = ift.RGSpace((nu, nv))

23
    visspace = ift.UnstructuredDomain(N)
24

25
    img = np.random.randn(nu*nv)
26
27
28
29
    img = img.reshape((nu, nv))
    img = ift.from_global_data(uvspace, img)

    t0 = time()
30
    GM = ift.GridderMaker(uvspace, eps=1e-7, uv=uv)
31
    vis = ift.from_global_data(visspace, vis)
Martin Reinecke's avatar
Martin Reinecke committed
32
    op = GM.getFull().adjoint
33
34
35
36
37
    t1 = time()
    op(img).to_global_data()
    t2 = time()
    op.adjoint(vis).to_global_data()
    t3 = time()
38
    print(t2-t1, t3-t2)
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    N0s.append(N)
    a0s.append(t1 - t0)
    b0s.append(t2 - t1)
    c0s.append(t3 - t2)

print('Measure rest operator')
sc = ift.StatCalculator()
op = GM.getRest().adjoint
for _ in range(10):
    t0 = time()
    res = op(img)
    sc.add(time() - t0)
t_fft = sc.mean
print('FFT shape', res.shape)

plt.scatter(N0s, a0s, label='Gridder mr')
plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
56
# no idea why this is necessary, but if it is omitted, the range is wrong
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
57
plt.ylim(min(a0s), max(a0s))
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
plt.ylabel('time [s]')
plt.title('Initialization')
plt.loglog()
plt.savefig('bench0.png')
plt.close()

plt.scatter(N0s, b0s, color='k', marker='^', label='Gridder mr times')
plt.scatter(N0s, c0s, color='k', label='Gridder mr adjoint times')
plt.axhline(sc.mean, label='FFT')
plt.axhline(sc.mean + np.sqrt(sc.var))
plt.axhline(sc.mean - np.sqrt(sc.var))
plt.legend()
plt.ylabel('time [s]')
plt.title('Apply')
plt.loglog()
plt.savefig('bench1.png')
plt.close()