field.py 47.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20
21

import itertools
csongor's avatar
csongor committed
22
23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37
38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54
55
56
57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69
70
71
72
73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82
83
        Name of the used distribution_strategy.

84
85
86
87
88
89
90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92
93
94
95
96
97
98
99
100
101
102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104
105
106
107
108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

Theo Steininger's avatar
Theo Steininger committed
173
        return dtype
174

175
176
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
177
            if isinstance(val, distributed_data_object):
178
                distribution_strategy = val.distribution_strategy
179
            elif isinstance(val, Field):
180
                distribution_strategy = val.distribution_strategy
181
            else:
182
                self.logger.debug("distribution_strategy set to default!")
183
                distribution_strategy = gc['default_distribution_strategy']
184
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
185
186
187
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
188
        return distribution_strategy
189
190

    # ---Factory methods---
191

192
    @classmethod
193
    def from_random(cls, random_type, domain=None, dtype=None,
194
                    distribution_strategy=None, **kwargs):
195
196
197
198
199
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
200

201
202
203
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
204

205
206
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
207

208
209
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
210

211
212
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
213

214
215
216
217
218
219
220
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
221
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
222

223
224

        """
Theo Steininger's avatar
Theo Steininger committed
225

226
        # create a initially empty field
227
        f = cls(domain=domain, dtype=dtype,
228
                distribution_strategy=distribution_strategy)
229
230
231
232
233
234
235

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
236
        # extract the distributed_data_object from f and apply the appropriate
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
263
        else:
264
265
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
266

267
        return random_arguments
csongor's avatar
csongor committed
268

269
270
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
271
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
272
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
273
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
274

Theo Steininger's avatar
Theo Steininger committed
275
276
277
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
278
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
279
        field, corresponding to the square root of the power spectrum.
280
281
282

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
283
284
285
286
287
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
288
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
289
290
291
292
293
294
295
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
296
297
298
299
300
301
302
303
304
305
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
306

307
308
309
310
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
311
312
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
313
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
314

315
316
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
317
        out : Field
318
319
320
321
322
323
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
324

325
        """
Theo Steininger's avatar
Theo Steininger committed
326

Theo Steininger's avatar
Theo Steininger committed
327
        # check if all spaces in `self.domain` are either harmonic or
328
329
330
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
331
                self.logger.info(
332
                    "Field has a space in `domain` which is neither "
333
334
335
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
336
337
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
338
            spaces = range(len(self.domain))
339
340

        if len(spaces) == 0:
341
342
            raise ValueError(
                "No space for analysis specified.")
343

344
345
346
347
348
349
350
351
352
353
354
355
356
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
357
358

        for space_index in spaces:
359
360
            parts = [self._single_power_analyze(
                                work_field=part,
361
362
363
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
364
365
                                binbounds=binbounds)
                     for part in parts]
366

367
368
369
370
371
372
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
373
374
375

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
376
                              binbounds):
377

378
        if not work_field.domain[space_index].harmonic:
379
380
            raise ValueError(
                "The analyzed space must be harmonic.")
381

382
383
384
385
386
387
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

388
        distribution_strategy = \
389
390
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
391

392
        harmonic_domain = work_field.domain[space_index]
393
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
394
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
395
396
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
397

398
        # extract pindex and rho from power_domain
399
400
        pindex = power_domain.pindex
        rho = power_domain.rho
401

402
403
404
405
406
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
                                pindex=pindex,
                                rho=rho,
                                axes=work_field.domain_axes[space_index])
407
408

        # create the result field and put power_spectrum into it
409
        result_domain = list(work_field.domain)
410
        result_domain[space_index] = power_domain
411
        result_dtype = power_spectrum.dtype
412

413
        result_field = work_field.copy_empty(
414
                   domain=result_domain,
415
                   dtype=result_dtype,
416
                   distribution_strategy=power_spectrum.distribution_strategy)
417
418
419
420
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

421
422
    @classmethod
    def _calculate_power_spectrum(cls, field_val, pindex, rho, axes=None):
423
424

        if axes is not None:
425
426
427
428
429
430
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
431
432
433
434
435
436
437
438
439
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

440
441
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
442
443
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
444
            raise ValueError("pindex's distribution strategy must be "
445
446
447
448
449
450
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
451
                    "A slicing distributor shall not be reshaped to "
452
453
454
455
456
457
458
459
460
461
462
463
464
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

465
466
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
467
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
468

Theo Steininger's avatar
Theo Steininger committed
469
470
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
471

472
473
474
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
475
476
477
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
478
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
479
480
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
481
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
482
483
484
485
486
487
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
488
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
489
490
491
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
492

493
494
495
496
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
497
            stored in the `spaces` in `self`.
498

Theo Steininger's avatar
Theo Steininger committed
499
500
501
502
503
504
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

505
506
507
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
508
509
510
511
512

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

513
        """
Theo Steininger's avatar
Theo Steininger committed
514

515
516
517
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
518
519
520
        if spaces is None:
            spaces = range(len(self.domain))

521
522
523
524
525
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
526
527
528

        # create the result domain
        result_domain = list(self.domain)
529
530
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
531
            harmonic_domain = power_space.harmonic_partner
532
            result_domain[power_space_index] = harmonic_domain
533
534
535

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
536
        if real_power:
537
            result_list = [None]
538
539
        else:
            result_list = [None, None]
540

541
542
        result_list = [self.__class__.from_random(
                             'normal',
543
544
545
                             mean=mean,
                             std=std,
                             domain=result_domain,
546
                             dtype=np.complex,
547
                             distribution_strategy=self.distribution_strategy)
548
549
550
551
552
553
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
554
555

        spec = self.val.get_full_data()
556
557
        spec = np.sqrt(spec)

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

574
        if real_signal:
575
            result_val_list = [self._hermitian_decomposition(
576
577
578
579
580
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
581
                               for result_val in result_val_list]
582
583
584
585
586
587
588

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
589
        else:
590
591
592
593
            result = result_list[0] + 1j*result_list[1]

        return result

594
    @staticmethod
595
596
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
597
598
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
599
600
601
                       val,
                       domain_axes[spaces[0]],
                       preserve_gaussian_variance=preserve_gaussian_variance)
602
603
        # hermitianize all remaining spaces using the iterative formula
        for space in xrange(1, len(spaces)):
604
605
606
            (hh, ha) = domain[space].hermitian_decomposition(
                                              h,
                                              domain_axes[space],
607
                                              preserve_gaussian_variance=False)
608
609
610
            (ah, aa) = domain[space].hermitian_decomposition(
                                              a,
                                              domain_axes[space],
611
                                              preserve_gaussian_variance=False)
612
            c = (hh - ha - ah + aa).conjugate()
613
614
615
            full = (hh + ha + ah + aa)
            h = (full + c)/2.
            a = (full - c)/2.
616
617

        # correct variance
618

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
        # in principle one must not correct the variance for the fixed
        # points of the hermitianization. However, for a complex field
        # the input field loses half of its power at its fixed points
        # in the `hermitian` part. Hence, here a factor of sqrt(2) is
        # also necessary!
        # => The hermitianization can be done on a space level since either
        # nothing must be done (LMSpace) or ALL points need a factor of sqrt(2)
        # => use the preserve_gaussian_variance flag in the
        # hermitian_decomposition method above.

        # This code is for educational purposes:
#        fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
#        # check if there was at least one flipping during hermitianization
#        flipped_Q = np.any([fp is not None for fp in fixed_points])
#        # if the array got flipped, correct the variance
#        if flipped_Q:
#            h *= np.sqrt(2)
#            a *= np.sqrt(2)
#
638
639
640
641
642
643
644
645
646
647
648
649
650
#            fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
#            for product_point in itertools.product(*fixed_points):
#                slice_object = np.array((slice(None), )*len(val.shape),
#                                        dtype=np.object)
#                for i, sp in enumerate(spaces):
#                    point_component = product_point[i]
#                    if point_component is None:
#                        point_component = slice(None)
#                    slice_object[list(domain_axes[sp])] = point_component
#
#                slice_object = tuple(slice_object)
#                h[slice_object] /= np.sqrt(2)
#                a[slice_object] /= np.sqrt(2)
651
652
653

        return (h, a)

654
655
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
656
657
658

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
659
        pindex = power_space.pindex
660
661
662
663
664
665
666
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
667
            self.logger.warn(
668
                "The distribution_stragey of pindex does not fit the "
669
670
671
672
673
674
675
676
677
678
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex
        # here, the power_spectrum is distributed into the new shape
679
680
        local_rescaler = spec[local_blow_up]
        return local_rescaler
681

Theo Steininger's avatar
Theo Steininger committed
682
    # ---Properties---
683

Theo Steininger's avatar
Theo Steininger committed
684
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
685
        """ Sets the fields distributed_data_object.
686
687
688

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
689
        new_val : scalar, array-like, Field, None *optional*
690
691
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
692

693
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
694
695
            If False, Field tries to not copy the input data but use it
            directly.
696
697
698
699
700
701
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
702

703
704
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
705
706
            new_val = new_val.copy()
        self._val = new_val
707
        return self
csongor's avatar
csongor committed
708

709
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
710
        """ Returns the distributed_data_object associated with this Field.
711
712
713
714

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
715
716
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
717

718
719
720
721
722
723
724
725
726
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
727

728
729
730
        if self._val is None:
            self.set_val(None)

731
        if copy:
Theo Steininger's avatar
Theo Steininger committed
732
            return self._val.copy()
733
        else:
Theo Steininger's avatar
Theo Steininger committed
734
            return self._val
csongor's avatar
csongor committed
735

Theo Steininger's avatar
Theo Steininger committed
736
737
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
738
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
739

740
741
742
743
744
745
746
747
748
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
749

750
        return self.get_val(copy=False)
csongor's avatar
csongor committed
751

Theo Steininger's avatar
Theo Steininger committed
752
753
    @val.setter
    def val(self, new_val):
754
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
755

756
757
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
758
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
759

760
761
762
763
764
765
766
767
768
769
770
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
771

772
        shape_tuple = tuple(sp.shape for sp in self.domain)
773
774
775
776
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
777

778
        return global_shape
csongor's avatar
csongor committed
779

780
781
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
782
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
783

Theo Steininger's avatar
Theo Steininger committed
784
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
785

786
787
788
789
790
791
792
793
794
795
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
796

797
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
798
799
800
801
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
802

803
804
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
805
806
807
808
809
810
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
811
812
813
814
815
816
817
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
818
819
820
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
821
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
822
        try:
Theo Steininger's avatar
Theo Steininger committed
823
            return reduce(lambda x, y: x * y, volume_tuple)
824
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
825
            return 0.
826

Theo Steininger's avatar
Theo Steininger committed
827
    # ---Special unary/binary operations---
828

csongor's avatar
csongor committed
829
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
830
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
831

832
833
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
834
        x : scalar, d2o, Field, array_like
835
836
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
837

838
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
839
840
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
841

842
843
844
845
846
847
848
849
850
851
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
852
853
        if dtype is None:
            dtype = self.dtype
854
855
        else:
            dtype = np.dtype(dtype)
856

857
858
        casted_x = x

859
        for ind, sp in enumerate(self.domain):
860
            casted_x = sp.pre_cast(casted_x,
861
862
863
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
864
865

        for ind, sp in enumerate(self.domain):
866
867
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
868

869
        return casted_x
csongor's avatar
csongor committed
870

Theo Steininger's avatar
Theo Steininger committed
871
    def _actual_cast(self, x, dtype=None):
872
        if isinstance(x, Field):
csongor's avatar
csongor committed
873
874
875
876
877
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

878
        return_x = distributed_data_object(
879
880
881
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
882
883
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
884

885
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
886
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
887

888
889
890
891
892
893
894
895
896
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
897

898
899
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
900

901
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
902
903
            The new distribution strategy the Field shall have.

904
905
906
907
908
909
910
911
912
913
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
914

Theo Steininger's avatar
Theo Steininger committed
915
        copied_val = self.get_val(copy=True)
916
917
918
919
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
920
921
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
922

923
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
924
925
926
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
927
928
929
930
931
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
932

933
934
935
936
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
937

938
939
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
940

Theo Steininger's avatar
Theo Steininger committed
941
        distribution_strategy : string, all supported distribution strategies
942
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
943

944
945
946
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
947
            The output object.
948
949
950
951
952
953

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
954

Theo Steininger's avatar
Theo Steininger committed
955
956
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
957
        else:
Theo Steininger's avatar
Theo Steininger committed
958
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
959

Theo Steininger's avatar
Theo Steininger committed
960
961
962
963
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
964

965
966
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
967

Theo Steininger's avatar
Theo Steininger committed
968
969
970
971
972
973
974
975
976
977
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
978
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
979
980
981
982
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
983
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
984
        return new_field
csongor's avatar
csongor committed
985

Theo Steininger's avatar
Theo Steininger committed
986
987
988
989
990
991
992
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
993
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
994
995
996
997
998
999
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
1000
        """ Weights the pixels of `self` with their invidual pixel-volume.
1001
1002
1003
1004

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1005
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1006

1007
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1008
1009
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1010

Theo Steininger's avatar
Theo Steininger committed
1011
1012
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1013

1014
1015
1016
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1017
            The weighted field.
1018
1019

        """
1020
        if inplace:
csongor's avatar
csongor committed
1021
1022
1023
1024
            new_field = self
        else:
            new_field = self.copy_empty()

1025
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1026

1027
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1028
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
1029
            spaces = range(len(self.domain))