power_space.py 8.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
theos's avatar
theos committed
18

theos's avatar
theos committed
19
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
20
21
from .space import Space
from .. import dobj
theos's avatar
theos committed
22
23


Theo Steininger's avatar
Theo Steininger committed
24
class PowerSpace(Space):
Martin Reinecke's avatar
Martin Reinecke committed
25
    """NIFTy class for spaces of power spectra.
Theo Steininger's avatar
Theo Steininger committed
26

Martin Reinecke's avatar
Martin Reinecke committed
27
28
29
    A power space is the result of a projection of a harmonic space where
    k-modes of equal length get mapped to one power index.

Theo Steininger's avatar
Theo Steininger committed
30
31
32
33
    Parameters
    ----------
    harmonic_partner : Space
        The harmonic Space of which this is the power space.
Martin Reinecke's avatar
Martin Reinecke committed
34
35
36
37
38
39
40
41
42
43
44
    binbounds: None, or tuple/array/list of float
        if None:
            There will be as many bins as there are distinct k-vector lengths
            in the harmonic partner space.
            The "binbounds" property of the PowerSpace will also be None.
        else:
            the bin bounds requested for this PowerSpace. The array
            must be sorted and strictly ascending. The first entry is the right
            boundary of the first bin, and the last entry is the left boundary
            of the last bin, i.e. thee will be len(binbounds)+1 bins in total,
            with the first and last bins reaching to -+infinity, respectively.
45
            (default : None)
Theo Steininger's avatar
Theo Steininger committed
46
    """
47

48
49
    _powerIndexCache = {}

Martin Reinecke's avatar
Martin Reinecke committed
50
    @staticmethod
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
51
    def linear_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
52
        """
Martin Reinecke's avatar
Martin Reinecke committed
53
54
55
56
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in linear scale) between these two.

Martin Reinecke's avatar
Martin Reinecke committed
57
58
59
60
61
62
63
64
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
65
66
        assert nbin >= 3, "nbin must be at least 3"
        return np.linspace(float(first_bound), float(last_bound), nbin-1)
Martin Reinecke's avatar
Martin Reinecke committed
67
68

    @staticmethod
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
69
    def logarithmic_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
70
        """
Martin Reinecke's avatar
Martin Reinecke committed
71
72
73
74
75
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in natural logarithmic scale)
        between these two.

Martin Reinecke's avatar
Martin Reinecke committed
76
77
78
79
80
81
82
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
Martin Reinecke's avatar
Martin Reinecke committed
83
        nbin = int(nbin)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
84
        assert nbin >= 3, "nbin must be at least 3"
Martin Reinecke's avatar
Martin Reinecke committed
85
86
87
        return np.logspace(np.log(float(first_bound)),
                           np.log(float(last_bound)),
                           nbin-1, base=np.e)
Martin Reinecke's avatar
Martin Reinecke committed
88

89
90
91
92
93
94
95
96
    @staticmethod
    def useful_binbounds(space, logarithmic, nbin=None):
        if not (isinstance(space, Space) and space.harmonic):
            raise ValueError("first argument must be a harmonic space.")
        if logarithmic is None and nbin is None:
            return None
        nbin = None if nbin is None else int(nbin)
        logarithmic = bool(logarithmic)
97
        dists = space.get_unique_k_lengths()
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        if len(dists) < 3:
            raise ValueError("Space does not have enough unique k lengths")
        lbound = 0.5*(dists[0]+dists[1])
        rbound = 0.5*(dists[-2]+dists[-1])
        dists[0] = lbound
        dists[-1] = rbound
        if logarithmic:
            dists = np.log(dists)
        binsz_min = np.max(np.diff(dists))
        nbin_max = int((dists[-1]-dists[0])/binsz_min)+2
        if nbin is None:
            nbin = nbin_max
        assert nbin >= 3, "nbin must be at least 3"
        if nbin > nbin_max:
            raise ValueError("nbin is too large")
        if logarithmic:
            return PowerSpace.logarithmic_binbounds(nbin, lbound, rbound)
        else:
            return PowerSpace.linear_binbounds(nbin, lbound, rbound)

Martin Reinecke's avatar
Martin Reinecke committed
118
    def __init__(self, harmonic_partner, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
119
        super(PowerSpace, self).__init__()
120
        self._needed_for_hash += ['_harmonic_partner', '_binbounds']
121

Martin Reinecke's avatar
Martin Reinecke committed
122
123
124
        if not (isinstance(harmonic_partner, Space) and
                harmonic_partner.harmonic):
            raise ValueError("harmonic_partner must be a harmonic space.")
Martin Reinecke's avatar
Martin Reinecke committed
125
126
127
        if harmonic_partner.scalar_dvol() is None:
            raise ValueError("harmonic partner must have "
                             "scalar volume factors")
128
        self._harmonic_partner = harmonic_partner
Martin Reinecke's avatar
Martin Reinecke committed
129
        pdvol = harmonic_partner.scalar_dvol()
130

Martin Reinecke's avatar
Martin Reinecke committed
131
132
        if binbounds is not None:
            binbounds = tuple(binbounds)
133

Martin Reinecke's avatar
Martin Reinecke committed
134
        key = (harmonic_partner, binbounds)
135
        if self._powerIndexCache.get(key) is None:
136
            k_length_array = self.harmonic_partner.get_k_length_array()
Martin Reinecke's avatar
Martin Reinecke committed
137
138
139
140
141
142
            if binbounds is None:
                tmp = harmonic_partner.get_unique_k_lengths()
                tbb = 0.5*(tmp[:-1]+tmp[1:])
            else:
                tbb = binbounds
            locdat = np.searchsorted(tbb, dobj.local_data(k_length_array.val))
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
143
            temp_pindex = dobj.from_local_data(
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
144
                k_length_array.val.shape, locdat, dobj.distaxis(k_length_array.val))
Martin Reinecke's avatar
Martin Reinecke committed
145
            nbin = len(tbb)+1
Martin Reinecke's avatar
Martin Reinecke committed
146
147
            temp_rho = np.bincount(dobj.local_data(temp_pindex).ravel(),
                                   minlength=nbin)
Martin Reinecke's avatar
Martin Reinecke committed
148
            temp_rho = dobj.np_allreduce_sum(temp_rho)
Martin Reinecke's avatar
Martin Reinecke committed
149
            assert not (temp_rho == 0).any(), "empty bins detected"
Martin Reinecke's avatar
Martin Reinecke committed
150
151
152
            # The explicit conversion to float64 is necessary because bincount
            # sometimes returns its result as an integer array, even when
            # floating-point weights are present ...
Martin Reinecke's avatar
Martin Reinecke committed
153
            temp_k_lengths = np.bincount(dobj.local_data(temp_pindex).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
154
                weights=dobj.local_data(k_length_array.val).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
155
                minlength=nbin).astype(np.float64, copy=False)
Martin Reinecke's avatar
Martin Reinecke committed
156
            temp_k_lengths = dobj.np_allreduce_sum(temp_k_lengths) / temp_rho
Martin Reinecke's avatar
Martin Reinecke committed
157
            temp_dvol = temp_rho*pdvol
Martin Reinecke's avatar
Martin Reinecke committed
158
159
            self._powerIndexCache[key] = (binbounds, temp_pindex,
                                          temp_k_lengths, temp_dvol)
160

Martin Reinecke's avatar
Martin Reinecke committed
161
        (self._binbounds, self._pindex, self._k_lengths, self._dvol) = \
162
163
            self._powerIndexCache[key]

164
    def __repr__(self):
Martin Reinecke's avatar
stage1    
Martin Reinecke committed
165
166
        return ("PowerSpace(harmonic_partner=%r, binbounds=%r)"
                % (self.harmonic_partner, self._binbounds))
167

168
169
    @property
    def harmonic(self):
170
        return False
171

172
173
    @property
    def shape(self):
Martin Reinecke's avatar
Martin Reinecke committed
174
        return self.k_lengths.shape
175

176
177
178
179
    @property
    def dim(self):
        return self.shape[0]

180
    def scalar_dvol(self):
Martin Reinecke's avatar
Martin Reinecke committed
181
182
183
184
        return None

    def dvol(self):
        return self._dvol
185

186
    @property
187
    def harmonic_partner(self):
Martin Reinecke's avatar
Martin Reinecke committed
188
        """Returns the Space of which this is the power space."""
189
        return self._harmonic_partner
190
191

    @property
Martin Reinecke's avatar
Martin Reinecke committed
192
    def binbounds(self):
Martin Reinecke's avatar
Martin Reinecke committed
193
194
195
        """Returns the boundaries between the power spectrum bins as a tuple.
        None is used to indicate natural binning.
        """
Martin Reinecke's avatar
Martin Reinecke committed
196
        return self._binbounds
197
198
199

    @property
    def pindex(self):
Martin Reinecke's avatar
Martin Reinecke committed
200
        """Returns a data object having the shape of the harmonic partner
Theo Steininger's avatar
Theo Steininger committed
201
202
        space containing the indices of the power bin a pixel belongs to.
        """
203
204
205
        return self._pindex

    @property
Martin Reinecke's avatar
Martin Reinecke committed
206
    def k_lengths(self):
Martin Reinecke's avatar
Martin Reinecke committed
207
        """Returns a sorted array of all k-modes."""
Martin Reinecke's avatar
Martin Reinecke committed
208
        return self._k_lengths