Wiener Filter.ipynb 20 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# A NIFTy demonstration"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## IFT: Big Picture\n",
    "IFT starting point:\n",
    "\n",
    "$$d = Rs+n$$\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
27
    "Typically, $s$ is a continuous field, $d$ a discrete data vector. Particularly, $R$ is not invertible.\n",
Philipp Arras's avatar
Philipp Arras committed
28
29
30
31
32
33
    "\n",
    "IFT aims at **inverting** the above uninvertible problem in the **best possible way** using Bayesian statistics.\n",
    "\n",
    "\n",
    "## NIFTy\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
34
    "NIFTy (Numerical Information Field Theory) is a Python framework in which IFT problems can be tackled easily.\n",
Philipp Arras's avatar
Philipp Arras committed
35
36
37
38
39
    "\n",
    "Main Interfaces:\n",
    "\n",
    "- **Spaces**: Cartesian, 2-Spheres (Healpix, Gauss-Legendre) and their respective harmonic spaces.\n",
    "- **Fields**: Defined on spaces.\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
40
    "- **Operators**: Acting on fields."
Philipp Arras's avatar
Philipp Arras committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## Wiener Filter: Formulae\n",
    "\n",
    "### Assumptions\n",
    "\n",
    "- $d=Rs+n$, $R$ linear operator.\n",
    "- $\\mathcal P (s) = \\mathcal G (s,S)$, $\\mathcal P (n) = \\mathcal G (n,N)$ where $S, N$ are positive definite matrices.\n",
    "\n",
    "### Posterior\n",
    "The Posterior is given by:\n",
    "\n",
    "$$\\mathcal P (s|d) \\propto P(s,d) = \\mathcal G(d-Rs,N) \\,\\mathcal G(s,S) \\propto \\mathcal G (m,D) $$\n",
    "\n",
    "where\n",
    "$$\\begin{align}\n",
    "m &= Dj \\\\\n",
    "D^{-1}&= (S^{-1} +R^\\dagger N^{-1} R )\\\\\n",
    "j &= R^\\dagger N^{-1} d\n",
    "\\end{align}$$\n",
    "\n",
    "Let us implement this in NIFTy!"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "## Wiener Filter: Example\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
83
    "- One-dimensional signal with power spectrum: $$P(k) = P_0\\,\\left(1+\\left(\\frac{k}{k_0}\\right)^2\\right)^{-\\gamma /2},$$\n",
Philipp Arras's avatar
Philipp Arras committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    "with $P_0 = 0.2, k_0 = 5, \\gamma = 4$. Recall: $P(k)$ defines an isotropic and homogeneous $S$.\n",
    "- $N = 0.5 \\cdot \\text{id}$.\n",
    "- Number data points $N_{pix} = 512$.\n",
    "- Response operator:\n",
    "$$R_x=\\begin{pmatrix} \\delta(x-0)\\\\\\delta(x-1)\\\\\\ldots\\\\ \\delta(x-511) \\end{pmatrix}.$$\n",
    "However, the signal space is also discrete on the computer and $R = \\text{id}$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "N_pixels = 512     # Number of pixels\n",
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
105
106
    "    P0, k0, gamma = [.2, 5, 4]\n",
    "    return P0 / ((1. + (k/k0)**2)**(gamma / 2))"
Philipp Arras's avatar
Philipp Arras committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter: Implementation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "source": [
    "### Import Modules"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "import numpy as np\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
142
    "np.random.seed(40)\n",
143
144
145
    "import nifty4 as ift\n",
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline"
Philipp Arras's avatar
Philipp Arras committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Implement Propagator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
169
170
171
172
173
174
    "def PropagatorOperator(R, N, Sh):\n",
    "    IC = ift.GradientNormController(name=\"inverter\", iteration_limit=50000,\n",
    "                                    tol_abs_gradnorm=0.1)\n",
    "    inverter = ift.ConjugateGradient(controller=IC)\n",
    "    D = (R.adjoint*N.inverse*R + Sh.inverse).inverse\n",
    "    # MR FIXME: we can/should provide a preconditioner here as well!\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
175
    "    return ift.InversionEnabler(D, inverter)\n"
Philipp Arras's avatar
Philipp Arras committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Conjugate Gradient Preconditioning\n",
    "\n",
    "- $D$ is defined via:\n",
    "$$D^{-1} = \\mathcal F^\\dagger S_h^{-1}\\mathcal F + R^\\dagger N^{-1} R.$$\n",
    "In the end, we want to apply $D$ to $j$, i.e. we need the inverse action of $D^{-1}$. This is done numerically (algorithm: *Conjugate Gradient*). \n",
    "\n",
    "- One can define the *condition number* of a non-singular and normal matrix $A$:\n",
    "$$\\kappa (A) := \\frac{|\\lambda_{\\text{max}}|}{|\\lambda_{\\text{min}}|},$$\n",
    "where $\\lambda_{\\text{max}}$ and $\\lambda_{\\text{min}}$ are the largest and smallest eigenvalue of $A$, respectively.\n",
    "\n",
    "- The larger $\\kappa$ the slower Conjugate Gradient.\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
198
    "- By default, conjugate gradient solves: $D^{-1} m = j$ for $m$, where $D^{-1}$ can be badly conditioned. If one knows a non-singular matrix $T$ for which $TD^{-1}$ is better conditioned, one can solve the equivalent problem:\n",
Philipp Arras's avatar
Philipp Arras committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    "$$\\tilde A m = \\tilde j,$$\n",
    "where $\\tilde A = T D^{-1}$ and $\\tilde j = Tj$.\n",
    "\n",
    "- In our case $S^{-1}$ is responsible for the bad conditioning of $D$ depending on the chosen power spectrum. Thus, we choose\n",
    "\n",
    "$$T = \\mathcal F^\\dagger S_h^{-1} \\mathcal F.$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Generate Mock data\n",
    "\n",
    "- Generate a field $s$ and $n$ with given covariances.\n",
    "- Calculate $d$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
224
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
225
226
   "outputs": [],
   "source": [
227
228
229
230
    "s_space = ift.RGSpace(N_pixels)\n",
    "h_space = s_space.get_default_codomain()\n",
    "HT = ift.HarmonicTransformOperator(h_space, target=s_space)\n",
    "p_space = ift.PowerSpace(h_space)\n",
Philipp Arras's avatar
Philipp Arras committed
231
232
    "\n",
    "# Operators\n",
233
234
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "R = HT #*ift.create_harmonic_smoothing_operator((h_space,), 0, 0.02)\n",
Philipp Arras's avatar
Philipp Arras committed
235
236
    "\n",
    "# Fields and data\n",
237
238
    "sh = ift.power_synthesize(ift.PS_field(p_space, pow_spec),real_signal=True)\n",
    "noiseless_data=R(sh)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
239
    "noise_amplitude = np.sqrt(0.05)\n",
240
241
242
    "N = ift.ScalingOperator(noise_amplitude**2, s_space)\n",
    "\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
243
    "                          std=noise_amplitude, mean=0)\n",
244
245
246
    "d = noiseless_data + n\n",
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "D = PropagatorOperator(R=R, N=N, Sh=Sh)"
Philipp Arras's avatar
Philipp Arras committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Run Wiener Filter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Create Power Spectra of Signal and Reconstruction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
294
295
296
297
    "s_power = ift.power_analyze(sh)\n",
    "m_power = ift.power_analyze(m)\n",
    "s_power_data = s_power.val.real\n",
    "m_power_data = m_power.val.real\n",
Philipp Arras's avatar
Philipp Arras committed
298
299
    "\n",
    "# Get signal data and reconstruction data\n",
300
301
    "s_data = HT(sh).val.real\n",
    "m_data = HT(m).val.real\n",
Philipp Arras's avatar
Philipp Arras committed
302
    "\n",
303
    "d_data = d.val.real"
Philipp Arras's avatar
Philipp Arras committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Signal Reconstruction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
327
    "plt.plot(s_data, 'g', label=\"Signal\")\n",
Philipp Arras's avatar
Philipp Arras committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    "plt.plot(d_data, 'k+', label=\"Data\")\n",
    "plt.plot(m_data, 'r', label=\"Reconstruction\")\n",
    "plt.title(\"Reconstruction\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "outputs": [],
   "source": [
    "plt.figure()\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
346
    "plt.plot(s_data - s_data, 'g', label=\"Signal\")\n",
Philipp Arras's avatar
Philipp Arras committed
347
348
    "plt.plot(d_data - s_data, 'k+', label=\"Data\")\n",
    "plt.plot(m_data - s_data, 'r', label=\"Reconstruction\")\n",
349
    "plt.axhspan(-noise_amplitude,noise_amplitude, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    "plt.title(\"Residuals\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Power Spectrum"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "plt.loglog()\n",
    "plt.xlim(1, int(N_pixels/2))\n",
    "ymin = min(m_power_data)\n",
    "plt.ylim(ymin, 1)\n",
    "xs = np.arange(1,int(N_pixels/2),.1)\n",
    "plt.plot(xs, pow_spec(xs), label=\"True Power Spectrum\", linewidth=.7, color='k')\n",
    "plt.plot(s_power_data, 'k', label=\"Signal\", alpha=.5, linewidth=.5)\n",
    "plt.plot(m_power_data, 'r', label=\"Reconstruction\")\n",
384
385
    "plt.axhline(noise_amplitude**2 / N_pixels, color=\"k\", linestyle='--', label=\"Noise level\", alpha=.5)\n",
    "plt.axhspan(noise_amplitude**2 / N_pixels, ymin, facecolor='0.9', alpha=.5)\n",
Philipp Arras's avatar
Philipp Arras committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    "plt.title(\"Power Spectrum\")\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Wiener Filter on Incomplete Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Operators\n",
413
414
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "N = ift.ScalingOperator(noise_amplitude**2,s_space)\n",
Philipp Arras's avatar
Philipp Arras committed
415
416
417
    "# R is defined below\n",
    "\n",
    "# Fields\n",
418
419
420
421
    "sh = ift.power_synthesize(ift.PS_field(p_space,pow_spec),real_signal=True)\n",
    "s = HT(sh)\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
    "                      std=noise_amplitude, mean=0)"
Philipp Arras's avatar
Philipp Arras committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Partially Lose Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "l = int(N_pixels * 0.2)\n",
446
    "h = int(N_pixels * 0.2 * 2)\n",
Philipp Arras's avatar
Philipp Arras committed
447
    "\n",
448
    "mask = ift.Field(s_space, val=1)\n",
Philipp Arras's avatar
Philipp Arras committed
449
450
    "mask.val[ l : h] = 0\n",
    "\n",
451
    "R = ift.DiagonalOperator(mask)*HT\n",
Philipp Arras's avatar
Philipp Arras committed
452
453
    "n.val[l:h] = 0\n",
    "\n",
454
    "d = R(sh) + n"
Philipp Arras's avatar
Philipp Arras committed
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "D = PropagatorOperator(R=R, N=N, Sh=Sh)\n",
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "m = D(j)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Compute Uncertainty\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
487
    "scrolled": true
Philipp Arras's avatar
Philipp Arras committed
488
489
490
   },
   "outputs": [],
   "source": [
491
    "sc = ift.probing.utils.StatCalculator()\n",
Philipp Arras's avatar
Philipp Arras committed
492
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
493
    "IC = ift.GradientNormController(iteration_limit=50000,\n",
494
495
496
497
498
    "                                    tol_abs_gradnorm=0.1)\n",
    "inverter = ift.ConjugateGradient(controller=IC)\n",
    "curv = ift.library.wiener_filter_curvature.WienerFilterCurvature(R,N,Sh,inverter)\n",
    "\n",
    "for i in range(200):\n",
Martin Reinecke's avatar
Martin Reinecke committed
499
    "    print i\n",
500
501
502
    "    sc.add(HT(curv.generate_posterior_sample()))\n",
    "\n",
    "m_var = sc.var"
Philipp Arras's avatar
Philipp Arras committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "source": [
    "### Get data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
526
527
528
529
    "s_power = ift.power_analyze(sh)\n",
    "m_power = ift.power_analyze(m)\n",
    "s_power_data = s_power.val.real\n",
    "m_power_data = m_power.val.real\n",
Philipp Arras's avatar
Philipp Arras committed
530
531
    "\n",
    "# Get signal data and reconstruction data\n",
532
533
534
    "s_data = s.val.real\n",
    "m_data = HT(m).val.real\n",
    "m_var_data = m_var.val.real\n",
Philipp Arras's avatar
Philipp Arras committed
535
    "uncertainty = np.sqrt(np.abs(m_var_data))\n",
536
    "d_data = d.val.real\n",
Philipp Arras's avatar
Philipp Arras committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    "\n",
    "# Set lost data to NaN for proper plotting\n",
    "d_data[d_data == 0] = np.nan"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "fig = plt.figure(figsize=(15,10))\n",
    "plt.plot(s_data, 'k', label=\"Signal\", alpha=.5, linewidth=1)\n",
    "plt.plot(d_data, 'k+', label=\"Data\", alpha=1)\n",
    "plt.axvspan(l, h, facecolor='0.8', alpha=.5)\n",
    "plt.title(\"Incomplete Data\")\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "fig = plt.figure(figsize=(15,10))\n",
    "plt.plot(s_data, 'k', label=\"Signal\", alpha=1, linewidth=1)\n",
    "plt.plot(d_data, 'k+', label=\"Data\", alpha=.5)\n",
    "plt.plot(m_data, 'r', label=\"Reconstruction\")\n",
    "plt.axvspan(l, h, facecolor='0.8', alpha=.5)\n",
    "plt.fill_between(range(N_pixels), m_data - uncertainty, m_data + uncertainty, facecolor='0')\n",
    "plt.title(\"Reconstruction of incomplete data\")\n",
    "plt.legend()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# 2d Example"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
594
   "metadata": {},
Philipp Arras's avatar
Philipp Arras committed
595
596
597
   "outputs": [],
   "source": [
    "N_pixels = 256      # Number of pixels\n",
Martin Reinecke's avatar
Martin Reinecke committed
598
    "sigma2 = 10.        # Noise variance\n",
Philipp Arras's avatar
Philipp Arras committed
599
600
601
    "\n",
    "\n",
    "def pow_spec(k):\n",
Martin Reinecke's avatar
Martin Reinecke committed
602
    "    P0, k0, gamma = [.2, 5, 4]\n",
Philipp Arras's avatar
Philipp Arras committed
603
604
605
    "    return P0 * (1. + (k/k0)**2)**(- gamma / 2)\n",
    "\n",
    "\n",
606
    "s_space = ift.RGSpace([N_pixels, N_pixels])"
Philipp Arras's avatar
Philipp Arras committed
607
608
609
610
611
612
613
614
615
616
617
618
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
619
    "h_space = s_space.get_default_codomain()\n",
Martin Reinecke's avatar
Martin Reinecke committed
620
    "HT = ift.HarmonicTransformOperator(h_space,s_space)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
621
    "p_space = ift.PowerSpace(h_space)\n",
Philipp Arras's avatar
Philipp Arras committed
622
623
    "\n",
    "# Operators\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
624
625
626
627
    "Sh = ift.create_power_operator(h_space, power_spectrum=pow_spec)\n",
    "N = ift.ScalingOperator(sigma2,s_space)\n",
    "R = ift.FFTSmoothingOperator(s_space, sigma=.01)\n",
    "#D = PropagatorOperator(R=R, N=N, Sh=Sh)\n",
Philipp Arras's avatar
Philipp Arras committed
628
629
    "\n",
    "# Fields and data\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
630
631
    "sh = ift.power_synthesize(ift.PS_field(p_space,pow_spec),real_signal=True)\n",
    "n = ift.Field.from_random(domain=s_space, random_type='normal',\n",
Philipp Arras's avatar
Philipp Arras committed
632
633
634
635
636
637
638
    "                      std=np.sqrt(sigma2), mean=0)\n",
    "\n",
    "# Lose some data\n",
    "\n",
    "l = int(N_pixels * 0.2)\n",
    "h = int(N_pixels * 0.2 * 2)\n",
    "\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
639
    "mask = ift.Field(s_space, val=1)\n",
Philipp Arras's avatar
Philipp Arras committed
640
641
    "mask.val[l:h,l:h] = 0\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
642
    "R = ift.DiagonalOperator(mask)*HT\n",
Philipp Arras's avatar
Philipp Arras committed
643
    "n.val[l:h, l:h] = 0\n",
Martin Reinecke's avatar
Martin Reinecke committed
644
    "D = PropagatorOperator(R=R, N=N, Sh=Sh)\n",
Philipp Arras's avatar
Philipp Arras committed
645
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
646
    "d = R(sh) + n\n",
Philipp Arras's avatar
Philipp Arras committed
647
648
649
650
651
652
    "j = R.adjoint_times(N.inverse_times(d))\n",
    "\n",
    "# Run Wiener filter\n",
    "m = D(j)\n",
    "\n",
    "# Uncertainty\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
653
654
    "sc = ift.probing.utils.StatCalculator()\n",
    "\n",
Martin Reinecke's avatar
Martin Reinecke committed
655
656
    "IC = ift.GradientNormController(iteration_limit=50000,\n",
    "                                tol_abs_gradnorm=0.1)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
657
    "inverter = ift.ConjugateGradient(controller=IC)\n",
Martin Reinecke's avatar
Martin Reinecke committed
658
    "curv = ift.library.wiener_filter_curvature.WienerFilterCurvature(R,N,Sh,inverter)\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
659
660
    "\n",
    "for i in range(20):\n",
Martin Reinecke's avatar
Martin Reinecke committed
661
    "    print i\n",
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
662
663
664
    "    sc.add(HT(curv.generate_posterior_sample()))\n",
    "\n",
    "m_var = sc.var\n",
Philipp Arras's avatar
Philipp Arras committed
665
666
    "\n",
    "# Get data\n",
Martin Reinecke's avatar
Martin Reinecke committed
667
668
669
670
671
672
673
674
    "s_power = ift.power_analyze(sh)\n",
    "m_power = ift.power_analyze(m)\n",
    "s_power_data = s_power.val.real\n",
    "m_power_data = m_power.val.real\n",
    "s_data = HT(sh).val.real\n",
    "m_data = HT(m).val.real\n",
    "m_var_data = m_var.val.real\n",
    "d_data = d.val.real\n",
Philipp Arras's avatar
Philipp Arras committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    "\n",
    "uncertainty = np.sqrt(np.abs(m_var_data))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "cm = ['magma', 'inferno', 'plasma', 'viridis'][1]\n",
    "\n",
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
    "fig, axes = plt.subplots(1, 2, figsize=(15, 7))\n",
    "\n",
    "data = [s_data, d_data]\n",
    "caption = [\"Signal\", \"Data\"]\n",
    "\n",
    "for ax in axes.flat:\n",
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi,\n",
    "                   vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "mi = np.min(s_data)\n",
    "ma = np.max(s_data)\n",
    "\n",
    "fig, axes = plt.subplots(2, 2, figsize=(15, 15))\n",
    "\n",
    "data = [s_data, m_data, s_data - m_data, uncertainty]\n",
    "caption = [\"Signal\", \"Reconstruction\", \"Residuals\", \"Uncertainty Map\"]\n",
    "\n",
    "for ax in axes.flat:\n",
    "    im = ax.imshow(data.pop(0), interpolation='nearest', cmap=cm, vmin=mi, vmax=ma)\n",
    "    ax.set_title(caption.pop(0))\n",
    "\n",
    "fig.subplots_adjust(right=0.8)\n",
    "cbar_ax = fig.add_axes([.85, 0.15, 0.05, 0.7])\n",
    "fig.colorbar(im, cax=cbar_ax)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "### Is the uncertainty map reliable?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "precise = (np.abs(s_data-m_data) < uncertainty )\n",
    "print(\"Error within uncertainty map bounds: \" + str(np.sum(precise) * 100 / N_pixels**2) + \"%\")\n",
    "\n",
    "fig = plt.figure()\n",
    "plt.imshow(precise.astype(float), cmap=\"brg\")\n",
Martin Reinecke's avatar
Martin Reinecke committed
762
    "plt.colorbar()"
Philipp Arras's avatar
Philipp Arras committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Start Coding\n",
    "## NIFTy Repository + Installation guide\n",
    "\n",
    "https://gitlab.mpcdf.mpg.de/ift/NIFTy\n",
    "\n",
    "commit 1d10be4674a42945f8548f3b68688bf0f0d753fe\n",
    "\n",
    "NIFTy v3 **not (yet) stable!**"
   ]
  }
 ],
 "metadata": {
  "celltoolbar": "Slideshow",
  "kernelspec": {
787
   "display_name": "Python 2",
Philipp Arras's avatar
Philipp Arras committed
788
   "language": "python",
789
   "name": "python2"
Philipp Arras's avatar
Philipp Arras committed
790
791
792
793
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
794
    "version": 2
Philipp Arras's avatar
Philipp Arras committed
795
796
797
798
799
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
800
801
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
Philipp Arras's avatar
Philipp Arras committed
802
803
804
805
806
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}