conjugate_gradient.py 6.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
18

19
20
21
from __future__ import division
import numpy as np

22
from keepers import Loggable
23

24

25
class ConjugateGradient(Loggable, object):
26
27
    def __init__(self, convergence_tolerance=1E-4, convergence_level=3,
                 iteration_limit=None, reset_count=None,
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
                 preconditioner=None, callback=None):
        """
            Initializes the conjugate_gradient and sets the attributes (except
            for `x`).

            Parameters
            ----------
            A : {operator, function}
                Operator `A` applicable to a field.
            b : field
                Resulting field of the operation `A(x)`.
            W : {operator, function}, *optional*
                Operator `W` that is a preconditioner on `A` and is applicable to a
                field (default: None).
            spam : function, *optional*
                Callback function which is given the current `x` and iteration
                counter each iteration (default: None).
            reset : integer, *optional*
                Number of iterations after which to restart; i.e., forget previous
                conjugated directions (default: sqrt(b.dim)).
            note : bool, *optional*
                Indicates whether notes are printed or not (default: False).

        """
        self.convergence_tolerance = np.float(convergence_tolerance)
        self.convergence_level = np.float(convergence_level)
54
55
56
57
58
59
60
61

        if iteration_limit is not None:
            iteration_limit = int(iteration_limit)
        self.iteration_limit = iteration_limit

        if reset_count is not None:
            reset_count = int(reset_count)
        self.reset_count = reset_count
62
63
64
65
66
67
68

        if preconditioner is None:
            preconditioner = lambda z: z

        self.preconditioner = preconditioner
        self.callback = callback

69
    def __call__(self, A, b, x0):
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        """
            Runs the conjugate gradient minimization.

            Parameters
            ----------
            x0 : field, *optional*
                Starting guess for the minimization.
            tol : scalar, *optional*
                Tolerance specifying convergence; measured by current relative
                residual (default: 1E-4).
            clevel : integer, *optional*
                Number of times the tolerance should be undershot before
                exiting (default: 1).
            limii : integer, *optional*
                Maximum number of iterations performed (default: 10 * b.dim).

            Returns
            -------
            x : field
                Latest `x` of the minimization.
            convergence : integer
                Latest convergence level indicating whether the minimization
                has converged or not.

            """
        r = b - A(x0)
        d = self.preconditioner(r)
        previous_gamma = r.dot(d)
        if previous_gamma == 0:
99
100
            self.logger.info("The starting guess is already perfect solution "
                             "for the inverse problem.")
101
            return x0, self.convergence_level+1
102
        norm_b = np.sqrt(b.dot(b))
103
104
105
        x = x0
        convergence = 0
        iteration_number = 1
106
        self.logger.info("Starting conjugate gradient.")
107

108
        while True:
109
110
111
112
113
114
115
            if self.callback is not None:
                self.callback(x, iteration_number)

            q = A(d)
            alpha = previous_gamma/d.dot(q)

            if not np.isfinite(alpha):
116
                self.logger.error("Alpha became infinite! Stopping.")
117
118
119
120
121
122
                return x0, 0

            x += d * alpha

            reset = False
            if alpha.real < 0:
123
                self.logger.warn("Positive definiteness of A violated!")
124
                reset = True
125
126
127
            if self.reset_count is not None:
                reset += (iteration_number % self.reset_count == 0)
            if reset:
128
                self.logger.info("Resetting conjugate directions.")
129
130
131
132
133
134
135
136
                r = b - A(x)
            else:
                r -= q * alpha

            s = self.preconditioner(r)
            gamma = r.dot(s)

            if gamma.real < 0:
137
138
                self.logger.warn("Positive definitness of preconditioner "
                                 "violated!")
139
140
141

            beta = max(0, gamma/previous_gamma)

142
            delta = np.sqrt(gamma)/norm_b
143

144
145
146
147
148
149
            self.logger.debug("Iteration : %08u   alpha = %3.1E   "
                              "beta = %3.1E   delta = %3.1E" %
                              (iteration_number,
                               np.real(alpha),
                               np.real(beta),
                               np.real(delta)))
150
151
152

            if gamma == 0:
                convergence = self.convergence_level+1
153
                self.logger.info("Reached infinite convergence.")
154
155
156
                break
            elif abs(delta) < self.convergence_tolerance:
                convergence += 1
157
158
                self.logger.info("Updated convergence level to: %u" %
                                 convergence)
159
                if convergence == self.convergence_level:
160
                    self.logger.info("Reached target convergence level.")
161
162
163
164
                    break
            else:
                convergence = max(0, convergence-1)

165
166
            if self.iteration_limit is not None:
                if iteration_number == self.iteration_limit:
167
                    self.logger.warn("Reached iteration limit. Stopping.")
168
169
170
                    break

            d = s + d * beta
171
172
173
174
175

            iteration_number += 1
            previous_gamma = gamma

        return x, convergence