power_space.py 8.23 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13 14 15 16 17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
Theo Steininger's avatar
Theo Steininger committed
18

19
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
20
from .structured_domain import StructuredDomain
Martin Reinecke's avatar
Martin Reinecke committed
21
from .. import dobj
Theo Steininger's avatar
Theo Steininger committed
22 23


Martin Reinecke's avatar
Martin Reinecke committed
24
class PowerSpace(StructuredDomain):
Martin Reinecke's avatar
Martin Reinecke committed
25
    """NIFTy class for spaces of power spectra.
Theo Steininger's avatar
Theo Steininger committed
26

Martin Reinecke's avatar
Martin Reinecke committed
27 28 29
    A power space is the result of a projection of a harmonic space where
    k-modes of equal length get mapped to one power index.

Theo Steininger's avatar
Theo Steininger committed
30 31 32 33
    Parameters
    ----------
    harmonic_partner : Space
        The harmonic Space of which this is the power space.
Martin Reinecke's avatar
Martin Reinecke committed
34 35 36 37 38 39 40 41 42 43 44
    binbounds: None, or tuple/array/list of float
        if None:
            There will be as many bins as there are distinct k-vector lengths
            in the harmonic partner space.
            The "binbounds" property of the PowerSpace will also be None.
        else:
            the bin bounds requested for this PowerSpace. The array
            must be sorted and strictly ascending. The first entry is the right
            boundary of the first bin, and the last entry is the left boundary
            of the last bin, i.e. thee will be len(binbounds)+1 bins in total,
            with the first and last bins reaching to -+infinity, respectively.
45
            (default : None)
Theo Steininger's avatar
Theo Steininger committed
46
    """
47

48 49
    _powerIndexCache = {}

Martin Reinecke's avatar
Martin Reinecke committed
50
    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
51
    def linear_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
52
        """
Martin Reinecke's avatar
Martin Reinecke committed
53 54 55 56
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in linear scale) between these two.

Martin Reinecke's avatar
Martin Reinecke committed
57 58 59 60 61 62 63 64
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
        nbin = int(nbin)
65 66
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
67
        return np.linspace(float(first_bound), float(last_bound), nbin-1)
Martin Reinecke's avatar
Martin Reinecke committed
68 69

    @staticmethod
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
70
    def logarithmic_binbounds(nbin, first_bound, last_bound):
Martin Reinecke's avatar
Martin Reinecke committed
71
        """
Martin Reinecke's avatar
Martin Reinecke committed
72 73 74 75 76
        This will produce a binbounds array with nbin-1 entries with
        binbounds[0]=first_bound and binbounds[-1]=last_bound and the remaining
        values equidistantly spaced (in natural logarithmic scale)
        between these two.

Martin Reinecke's avatar
Martin Reinecke committed
77 78 79 80 81 82 83
        nbin: integer
            the number of bins
        first_bound, last_bound: float
            the k values for the right boundary of the first bin and the left
            boundary of the last bin, respectively. They are given in length
            units of the harmonic partner space.
        """
Martin Reinecke's avatar
Martin Reinecke committed
84
        nbin = int(nbin)
85 86
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
Martin Reinecke's avatar
Martin Reinecke committed
87 88 89
        return np.logspace(np.log(float(first_bound)),
                           np.log(float(last_bound)),
                           nbin-1, base=np.e)
Martin Reinecke's avatar
Martin Reinecke committed
90

91 92
    @staticmethod
    def useful_binbounds(space, logarithmic, nbin=None):
Martin Reinecke's avatar
Martin Reinecke committed
93
        if not (isinstance(space, StructuredDomain) and space.harmonic):
94 95 96 97 98
            raise ValueError("first argument must be a harmonic space.")
        if logarithmic is None and nbin is None:
            return None
        nbin = None if nbin is None else int(nbin)
        logarithmic = bool(logarithmic)
99
        dists = space.get_unique_k_lengths()
100 101 102 103 104 105 106 107 108 109 110 111
        if len(dists) < 3:
            raise ValueError("Space does not have enough unique k lengths")
        lbound = 0.5*(dists[0]+dists[1])
        rbound = 0.5*(dists[-2]+dists[-1])
        dists[0] = lbound
        dists[-1] = rbound
        if logarithmic:
            dists = np.log(dists)
        binsz_min = np.max(np.diff(dists))
        nbin_max = int((dists[-1]-dists[0])/binsz_min)+2
        if nbin is None:
            nbin = nbin_max
112 113
        if nbin < 3:
            raise ValueError("nbin must be at least 3")
114 115 116 117 118 119 120
        if nbin > nbin_max:
            raise ValueError("nbin is too large")
        if logarithmic:
            return PowerSpace.logarithmic_binbounds(nbin, lbound, rbound)
        else:
            return PowerSpace.linear_binbounds(nbin, lbound, rbound)

Martin Reinecke's avatar
Martin Reinecke committed
121
    def __init__(self, harmonic_partner, binbounds=None):
Martin Reinecke's avatar
Martin Reinecke committed
122
        super(PowerSpace, self).__init__()
123
        self._needed_for_hash += ['_harmonic_partner', '_binbounds']
124

Martin Reinecke's avatar
Martin Reinecke committed
125
        if not (isinstance(harmonic_partner, StructuredDomain) and
Martin Reinecke's avatar
Martin Reinecke committed
126 127
                harmonic_partner.harmonic):
            raise ValueError("harmonic_partner must be a harmonic space.")
Martin Reinecke's avatar
Martin Reinecke committed
128 129 130
        if harmonic_partner.scalar_dvol() is None:
            raise ValueError("harmonic partner must have "
                             "scalar volume factors")
131
        self._harmonic_partner = harmonic_partner
Martin Reinecke's avatar
Martin Reinecke committed
132
        pdvol = harmonic_partner.scalar_dvol()
133

Martin Reinecke's avatar
Martin Reinecke committed
134 135
        if binbounds is not None:
            binbounds = tuple(binbounds)
136

Martin Reinecke's avatar
Martin Reinecke committed
137
        key = (harmonic_partner, binbounds)
138
        if self._powerIndexCache.get(key) is None:
139
            k_length_array = self.harmonic_partner.get_k_length_array()
Martin Reinecke's avatar
Martin Reinecke committed
140 141 142 143 144 145
            if binbounds is None:
                tmp = harmonic_partner.get_unique_k_lengths()
                tbb = 0.5*(tmp[:-1]+tmp[1:])
            else:
                tbb = binbounds
            locdat = np.searchsorted(tbb, dobj.local_data(k_length_array.val))
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
146
            temp_pindex = dobj.from_local_data(
147 148
                k_length_array.val.shape, locdat,
                dobj.distaxis(k_length_array.val))
Martin Reinecke's avatar
Martin Reinecke committed
149
            nbin = len(tbb)+1
Martin Reinecke's avatar
Martin Reinecke committed
150 151
            temp_rho = np.bincount(dobj.local_data(temp_pindex).ravel(),
                                   minlength=nbin)
Martin Reinecke's avatar
Martin Reinecke committed
152
            temp_rho = dobj.np_allreduce_sum(temp_rho)
153 154
            if (temp_rho == 0).any():
                raise ValueError("empty bins detected")
Martin Reinecke's avatar
Martin Reinecke committed
155 156 157
            # The explicit conversion to float64 is necessary because bincount
            # sometimes returns its result as an integer array, even when
            # floating-point weights are present ...
158 159
            temp_k_lengths = np.bincount(
                dobj.local_data(temp_pindex).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
160
                weights=dobj.local_data(k_length_array.val).ravel(),
Martin Reinecke's avatar
Martin Reinecke committed
161
                minlength=nbin).astype(np.float64, copy=False)
Martin Reinecke's avatar
Martin Reinecke committed
162
            temp_k_lengths = dobj.np_allreduce_sum(temp_k_lengths) / temp_rho
Martin Reinecke's avatar
Martin Reinecke committed
163
            temp_dvol = temp_rho*pdvol
Martin Reinecke's avatar
Martin Reinecke committed
164 165
            self._powerIndexCache[key] = (binbounds, temp_pindex,
                                          temp_k_lengths, temp_dvol)
166

Martin Reinecke's avatar
Martin Reinecke committed
167
        (self._binbounds, self._pindex, self._k_lengths, self._dvol) = \
168 169
            self._powerIndexCache[key]

170
    def __repr__(self):
Martin Reinecke's avatar
stage1  
Martin Reinecke committed
171 172
        return ("PowerSpace(harmonic_partner=%r, binbounds=%r)"
                % (self.harmonic_partner, self._binbounds))
173

174 175
    @property
    def harmonic(self):
176
        return False
177

178 179
    @property
    def shape(self):
Martin Reinecke's avatar
Martin Reinecke committed
180
        return self.k_lengths.shape
181

182
    @property
Martin Reinecke's avatar
Martin Reinecke committed
183
    def size(self):
184 185
        return self.shape[0]

186
    def scalar_dvol(self):
Martin Reinecke's avatar
Martin Reinecke committed
187 188 189 190
        return None

    def dvol(self):
        return self._dvol
191

192
    @property
193
    def harmonic_partner(self):
Martin Reinecke's avatar
Martin Reinecke committed
194
        """Returns the Space of which this is the power space."""
195
        return self._harmonic_partner
196 197

    @property
Martin Reinecke's avatar
Martin Reinecke committed
198
    def binbounds(self):
Martin Reinecke's avatar
Martin Reinecke committed
199 200 201
        """Returns the boundaries between the power spectrum bins as a tuple.
        None is used to indicate natural binning.
        """
Martin Reinecke's avatar
Martin Reinecke committed
202
        return self._binbounds
203 204 205

    @property
    def pindex(self):
Martin Reinecke's avatar
Martin Reinecke committed
206
        """Returns a data object having the shape of the harmonic partner
Theo Steininger's avatar
Theo Steininger committed
207 208
        space containing the indices of the power bin a pixel belongs to.
        """
209 210 211
        return self._pindex

    @property
Martin Reinecke's avatar
Martin Reinecke committed
212
    def k_lengths(self):
Martin Reinecke's avatar
Martin Reinecke committed
213
        """Returns a sorted array of all k-modes."""
Martin Reinecke's avatar
Martin Reinecke committed
214
        return self._k_lengths