test_jacobian.py 6.29 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest
20
from numpy.testing import assert_
Philipp Arras's avatar
Philipp Arras committed
21 22 23

import nifty5 as ift

24
from ..common import list2fixture
Philipp Arras's avatar
Philipp Arras committed
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
space1 = space
seed = list2fixture([4, 78, 23])


def _make_linearization(type, space, seed):
    np.random.seed(seed)
    S = ift.ScalingOperator(1., space)
    s = S.draw_sample()
    if type == "Constant":
        return ift.Linearization.make_const(s)
    elif type == "Variable":
        return ift.Linearization.make_var(s)
    raise ValueError('unknown type passed')


def testBasics(space, seed):
    var = _make_linearization("Variable", space, seed)
    model = ift.ScalingOperator(6., var.target)
Martin Reinecke's avatar
Martin Reinecke committed
50
    ift.extra.check_jacobian_consistency(model, var.val)
Philipp Arras's avatar
Philipp Arras committed
51 52 53 54 55 56 57


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
58 59 60 61

    # FIXME Remove this?
    _make_linearization(type1, dom1, seed)
    _make_linearization(type2, dom2, seed)
Philipp Arras's avatar
Philipp Arras committed
62 63

    dom = ift.MultiDomain.union((dom1, dom2))
64 65
    select_s1 = ift.ducktape(None, dom1, "s1")
    select_s2 = ift.ducktape(None, dom2, "s2")
Philipp Arras's avatar
Philipp Arras committed
66 67
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
68
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
69 70
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
71
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
72 73
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
74
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
75 76
    model = ift.ScalingOperator(2.456, space)(select_s1*select_s2)
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
77
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
78
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
79
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
80
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
81 82
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
Martin Reinecke's avatar
Martin Reinecke committed
83
    ift.extra.check_jacobian_consistency(model, pos['s2'], ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
84
    model = select_s1**2
85
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
86
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
87
    model = select_s1.clip(-1, 1)
88
    pos = ift.from_random("normal", dom1)
89 90 91 92
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
    f = ift.from_random("normal", space)
    model = select_s1.clip(f-0.1, f+1.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
93
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
94 95 96
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
97
        ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
98 99 100 101 102


def testModelLibrary(space, seed):
    # Tests amplitude model and coorelated field model
    np.random.seed(seed)
103
    domain = ift.PowerSpace(space.get_default_codomain())
104 105
    model = ift.SLAmplitude(target=domain, n_pix=4, a=.5, k0=2, sm=3, sv=1.5,
                            im=1.75, iv=1.3)
106
    assert_(isinstance(model, ift.Operator))
Philipp Arras's avatar
Philipp Arras committed
107 108
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
109
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
110 111 112 113

    model2 = ift.CorrelatedField(space, model)
    S = ift.ScalingOperator(1., model2.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
114
    ift.extra.check_jacobian_consistency(model2, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
115

116 117 118 119
    domtup = ift.DomainTuple.make((space, space))
    model3 = ift.MfCorrelatedField(domtup, [model, model])
    S = ift.ScalingOperator(1., model3.domain)
    pos = S.draw_sample()
Martin Reinecke's avatar
Martin Reinecke committed
120
    ift.extra.check_jacobian_consistency(model3, pos, ntries=20)
121

Philipp Arras's avatar
Philipp Arras committed
122 123 124 125 126 127

def testPointModel(space, seed):
    S = ift.ScalingOperator(1., space)
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups  
Philipp Arras committed
128
    model = ift.InverseGammaOperator(space, alpha, q)
Philipp Arras's avatar
Philipp Arras committed
129
    # FIXME All those cdfs and ppfs are not very accurate
Martin Reinecke's avatar
Martin Reinecke committed
130
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-2, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
131

132

Philipp Frank's avatar
Philipp Frank committed
133
@pmp('target', [
Martin Reinecke's avatar
Martin Reinecke committed
134 135 136
    ift.RGSpace(64, distances=.789, harmonic=True),
    ift.RGSpace([32, 32], distances=.789, harmonic=True),
    ift.RGSpace([32, 32, 8], distances=.789, harmonic=True)
137
])
Martin Reinecke's avatar
Martin Reinecke committed
138 139 140
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
@pmp('seed', [4, 78, 23])
Philipp Frank's avatar
Philipp Frank committed
141 142 143 144 145 146 147 148 149 150 151
def testDynamicModel(target, causal, minimum_phase, seed):
    dct = {
            'target': target,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'causal': causal,
            'minimum_phase': minimum_phase
            }
    model, _ = ift.dynamic_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
152 153 154
    S = ift.ScalingOperator(1., model.domain)
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
155
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-5, ntries=20)
Philipp Frank's avatar
Philipp Frank committed
156
    if len(target.shape) > 1:
157
        dct = {
Philipp Frank's avatar
Philipp Frank committed
158
            'target': target,
159 160 161 162 163 164 165 166 167 168
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
Philipp Frank's avatar
Philipp Frank committed
169 170 171
        dct['lightcone_key'] = 'c'
        dct['sigc'] = 1.
        dct['quant'] = 5
172
        model, _ = ift.dynamic_lightcone_operator(**dct)
Martin Reinecke's avatar
Martin Reinecke committed
173 174 175
        S = ift.ScalingOperator(1., model.domain)
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
176
        ift.extra.check_jacobian_consistency(
177
            model, pos, tol=1e-5, ntries=20)