distributed_do.py 18.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20
21
22

import sys

23
24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25
26
27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
Martin Reinecke's avatar
Martin Reinecke committed
35
           "redistribute", "default_distaxis", "is_numpy", "absmax", "norm",
Martin Reinecke's avatar
Martin Reinecke committed
36
37
           "lock", "locked", "uniform_full", "transpose", "to_global_data_rw",
           "ensure_not_distributed", "ensure_default_distributed"]
Martin Reinecke's avatar
Martin Reinecke committed
38

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
39
40
41
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
42
master = (rank == 0)
43
44


Martin Reinecke's avatar
Martin Reinecke committed
45
46
47
48
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
49
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
50
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
51

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
52
53

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
54
55
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
56
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
57
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
58
59
    return lo, hi

60

61
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
62
    if len(shape) == 0 or distaxis == -1:
63
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
64
65
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
66
67
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
68

69
70
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
71
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
72
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
73
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
74
75
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
76
77
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
78
79
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
80

81
82
83
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
125
        return data_object(self._shape, self._data.real, self._distaxis)
126
127
128

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
129
        return data_object(self._shape, self._data.imag, self._distaxis)
130

Martin Reinecke's avatar
Martin Reinecke committed
131
132
133
134
135
136
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
137
    def _contraction_helper(self, op, mpiop, axis):
138
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
139
            if len(axis) == len(self._data.shape):
140
141
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
142
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
143
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
144
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
145
146
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
147
            return res2[()]
148
149

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
150
151
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
152
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
153
            return from_global_data(res2, distaxis=0)
154
        else:
Martin Reinecke's avatar
Martin Reinecke committed
155
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
156
157
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
158
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
159
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
160
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
161
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
162
163
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
164
165
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
166
167
168

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
169

170
171
172
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

173
174
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
175

176
177
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
178

179
180
181
182
183
184
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
185

186
187
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
188

Martin Reinecke's avatar
Martin Reinecke committed
189
    # FIXME: to be improved!
190
191
192
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
193
194
        return (abs(self-self.mean())**2).mean()

195
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
196
        a = self
197
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
198
            b = other
199
200
201
202
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
203
204
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
205
206
207
208
209
        elif np.isscalar(other):
            a = a._data
            b = other
        else:
            return NotImplemented
210
211

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
212
213
214
215
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
216
217

    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
218
        return data_object(self._shape, -self._data, self._distaxis)
219
220

    def __abs__(self):
221
        return data_object(self._shape, abs(self._data), self._distaxis)
222
223

    def all(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
224
        return self.sum() == self.size
225
226

    def any(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
227
        return self.sum() != 0
228

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
229
230
    def fill(self, value):
        self._data.fill(value)
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
247

Martin Reinecke's avatar
Martin Reinecke committed
248
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
249
250
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
251
252


Martin Reinecke's avatar
Martin Reinecke committed
253
254
255
256
257
258
def uniform_full(shape, fill_value, dtype=None, distaxis=0):
    return data_object(
        shape, np.broadcast_to(fill_value, local_shape(shape, distaxis)),
        distaxis)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
259
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
260
261
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
262
263


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
264
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
265
266
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
267
268


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
269
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
270
271
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
272
273
274
275
276
277
278


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
279
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
280
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
281
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
282
283
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
284
    return res[()]
285
286
287


def _math_helper(x, function, out):
288
    function = getattr(np, function)
289
290
291
292
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
293
        return data_object(x.shape, function(x._data), x._distaxis)
294
295


296
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
297

298
for f in ["sqrt", "exp", "log", "tanh", "conjugate"]:
299
300
301
302
303
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
304
305


Martin Reinecke's avatar
Martin Reinecke committed
306
307
308
309
310
311
312
313
314
315
316
317
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix  
Martin Reinecke committed
318
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
319
    return data_object(object._shape, data, distaxis=object._distaxis)
320
321


Martin Reinecke's avatar
Martin Reinecke committed
322
323
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
324
325
326
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
327
def from_random(random_type, shape, dtype=np.float64, **kwargs):
328
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
329
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
330
331
332
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
333
334
335
336
337
338
339
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
340

Martin Reinecke's avatar
Martin Reinecke committed
341

Martin Reinecke's avatar
Martin Reinecke committed
342
343
344
345
def local_data(arr):
    return arr._data


346
347
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
348
    if distaxis < 0:
349
350
351
352
353
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
354
355
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
356
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
357
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
358
359


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
360
361
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
362
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
363
    return res
Martin Reinecke's avatar
Martin Reinecke committed
364
365


366
367
368
369
370
371
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
372
373
374
375
376
377
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
378
379
380
381
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
382
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
383
384
385
    return data_object(shape, arr, distaxis)


386
387
388
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
389
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
390
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
391
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
392
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
393
    sl[distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
394
395
396
    return data_object(arr.shape, arr[sl], distaxis)


Martin Reinecke's avatar
Martin Reinecke committed
397
398
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
399
400
401
402
403
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


404
405
406
407
408
409
410
def to_global_data_rw(arr):
    if arr._distaxis == -1:
        return arr._data.copy()
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
411
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
412
413
414
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
415
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
416
417
418
419
420
421
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
422
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
423
424
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
425
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
426
                break
Martin Reinecke's avatar
Martin Reinecke committed
427

Martin Reinecke's avatar
Martin Reinecke committed
428
    if arr._distaxis == -1:  # all data available, just pick the proper subset
429
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
430
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
431
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
432
433
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
434
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
435
436
437
438
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
439
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
440
441
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
442
443
444
445
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
446
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
447
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
448

Martin Reinecke's avatar
Martin Reinecke committed
449
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
450
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
451
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
452
453
454
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
455
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
456
457
458
459
460
461
462
463
464
465
466
467
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
468
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
469
470
471
472
473
474
            ssz[i] = ssz0*(hi-lo)
            sbuf[ofs:ofs+ssz[i]] = arr._data[sslice].flat
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
475
476
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
477
478
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
479
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
480
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
481
482
483
484
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
485
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
486
487
488
489
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
490
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
491
            sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
492
            arrnew[rslice].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
493
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
494
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
495
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
496
497


Martin Reinecke's avatar
Martin Reinecke committed
498
499
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
500
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
501
502
503
504
505
506
507
508
509
510
511
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
512
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
513
514
515
516
517
518
519
520
521
522
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
523
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
524
525
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
526
527
528
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
529
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
530
        ofs += sz
531
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
532
533


Martin Reinecke's avatar
Martin Reinecke committed
534
535
def default_distaxis():
    return 0
536
537
538
539
540
541
542
543


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
544
545
546
547
548
549
550
551
552
553
554
555


def ensure_not_distributed(arr, axes):
    if arr._distaxis in axes:
        arr = redistribute(arr, nodist=axes)
    return arr, arr._data


def ensure_default_distributed(arr):
    if arr._distaxis != 0:
        arr = redistribute(arr, dist=0)
    return arr
Martin Reinecke's avatar
Martin Reinecke committed
556
557
558
559
560
561


def absmax(arr):
    if arr._data.size == 0:
        tmp = np.array(0, dtype=arr._data.dtype)
    else:
562
        tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=np.inf))
Martin Reinecke's avatar
Martin Reinecke committed
563
564
565
566
567
568
569
570
    res = np.empty_like(tmp)
    _comm.Allreduce(tmp, res, MPI.MAX)
    return res[()]


def norm(arr, ord=2):
    if ord == np.inf:
        return absmax(arr)
571
    tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=ord) ** ord)
Martin Reinecke's avatar
Martin Reinecke committed
572
    res = np.empty_like(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
573
574
575
576
    if len(arr._data.shape) == 0:
        res = tmp
    else:
        _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
Martin Reinecke committed
577
    return res[()] ** (1./ord)