rg_space.py 11.9 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2015 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  rg
    ..                               /______/

Marco Selig's avatar
Marco Selig committed
31
    NIFTY submodule for regular Cartesian grids.
Marco Selig's avatar
Marco Selig committed
32
33
34

"""
from __future__ import division
Ultimanet's avatar
Ultimanet committed
35

36
37
import pickle

Marco Selig's avatar
Marco Selig committed
38
import numpy as np
Ultimanet's avatar
Ultimanet committed
39

40
41
from keepers import Versionable

42
43
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES
44

45
from nifty.spaces.space import Space
csongor's avatar
csongor committed
46

Marco Selig's avatar
Marco Selig committed
47

48
class RGSpace(Versionable, Space):
Marco Selig's avatar
Marco Selig committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    """
        ..      _____   _______
        ..    /   __/ /   _   /
        ..   /  /    /  /_/  /
        ..  /__/     \____  /  space class
        ..          /______/

        NIFTY subclass for spaces of regular Cartesian grids.

        Parameters
        ----------
        num : {int, numpy.ndarray}
            Number of gridpoints or numbers of gridpoints along each axis.
        naxes : int, *optional*
            Number of axes (default: None).
        zerocenter : {bool, numpy.ndarray}, *optional*
            Whether the Fourier zero-mode is located in the center of the grid
            (or the center of each axis speparately) or not (default: True).
        hermitian : bool, *optional*
            Whether the fields living in the space follow hermitian symmetry or
            not (default: True).
        purelyreal : bool, *optional*
            Whether the field values are purely real (default: True).
        dist : {float, numpy.ndarray}, *optional*
            Distance between two grid points along each axis (default: None).
        fourier : bool, *optional*
            Whether the space represents a Fourier or a position grid
            (default: False).

        Notes
        -----
        Only even numbers of grid points per axis are supported.
        The basis transformations between position `x` and Fourier mode `k`
        rely on (inverse) fast Fourier transformations using the
        :math:`exp(2 \pi i k^\dagger x)`-formulation.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing information on the axes of the
            space in the following form: The first entries give the grid-points
            along each axis in reverse order; the next entry is 0 if the
            fields defined on the space are purely real-valued, 1 if they are
            hermitian and complex, and 2 if they are not hermitian, but
            complex-valued; the last entries hold the information on whether
            the axes are centered on zero or not, containing a one for each
            zero-centered axis and a zero for each other one, in reverse order.
96
        dtype : numpy.dtype
Marco Selig's avatar
Marco Selig committed
97
98
99
100
101
102
103
104
105
106
107
108
109
            Data type of the field values for a field defined on this space,
            either ``numpy.float64`` or ``numpy.complex128``.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for regular grids.
        vol : numpy.ndarray
            One-dimensional array containing the distances between two grid
            points along each axis, in reverse order. By default, the total
            length of each axis is assumed to be one.
        fourier : bool
            Whether or not the grid represents a Fourier basis.
    """

110
111
    _serializable = ('shape', 'zerocenter', 'distances', 'harmonic', 'dtype')

112
113
    # ---Overwritten properties and methods---

114
    def __init__(self, shape=(1,), zerocenter=False, distances=None,
115
                 harmonic=False, dtype=None):
Marco Selig's avatar
Marco Selig committed
116
117
118
119
120
121
122
123
124
125
126
127
        """
            Sets the attributes for an rg_space class instance.

            Parameters
            ----------
            num : {int, numpy.ndarray}
                Number of gridpoints or numbers of gridpoints along each axis.
            naxes : int, *optional*
                Number of axes (default: None).
            zerocenter : {bool, numpy.ndarray}, *optional*
                Whether the Fourier zero-mode is located in the center of the
                grid (or the center of each axis speparately) or not
Ultimanet's avatar
Ultimanet committed
128
                (default: False).
Marco Selig's avatar
Marco Selig committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            hermitian : bool, *optional*
                Whether the fields living in the space follow hermitian
                symmetry or not (default: True).
            purelyreal : bool, *optional*
                Whether the field values are purely real (default: True).
            dist : {float, numpy.ndarray}, *optional*
                Distance between two grid points along each axis
                (default: None).
            fourier : bool, *optional*
                Whether the space represents a Fourier or a position grid
                (default: False).

            Returns
            -------
            None
        """
145
146
147
148
149
150
151
152
        self._harmonic = bool(harmonic)

        if dtype is None:
            if self.harmonic:
                dtype = np.dtype('complex')
            else:
                dtype = np.dtype('float')

153
        super(RGSpace, self).__init__(dtype)
154

155
156
157
        self._shape = self._parse_shape(shape)
        self._distances = self._parse_distances(distances)
        self._zerocenter = self._parse_zerocenter(zerocenter)
Marco Selig's avatar
Marco Selig committed
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def hermitian_decomposition(self, x, axes=None):
        # compute the hermitian part
        flipped_x = self._hermitianize_inverter(x, axes=axes)
        flipped_x = flipped_x.conjugate()
        # average x and flipped_x.
        hermitian_part = x + flipped_x
        hermitian_part /= 2.

        # use subtraction since it is faster than flipping another time
        anti_hermitian_part = (x-hermitian_part)/1j
        return (hermitian_part, anti_hermitian_part)

    def _hermitianize_inverter(self, x, axes):
        # calculate the number of dimensions the input array has
        dimensions = len(x.shape)
        # prepare the slicing object which will be used for mirroring
        slice_primitive = [slice(None), ] * dimensions
        # copy the input data
        y = x.copy()

        if axes is None:
            axes = xrange(dimensions)

        # flip in the desired directions
        for i in axes:
            slice_picker = slice_primitive[:]
            slice_picker[i] = slice(1, None, None)
            slice_picker = tuple(slice_picker)

            slice_inverter = slice_primitive[:]
            slice_inverter[i] = slice(None, 0, -1)
            slice_inverter = tuple(slice_inverter)

            try:
                y.set_data(to_key=slice_picker, data=y,
                           from_key=slice_inverter)
            except(AttributeError):
                y[slice_picker] = y[slice_inverter]
        return y

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

    @property
    def dim(self):
        return reduce(lambda x, y: x*y, self.shape)

    @property
    def total_volume(self):
        return self.dim * reduce(lambda x, y: x*y, self.distances)

    def copy(self):
        return self.__class__(shape=self.shape,
                              zerocenter=self.zerocenter,
                              distances=self.distances,
                              harmonic=self.harmonic,
                              dtype=self.dtype)

    def weight(self, x, power=1, axes=None, inplace=False):
        weight = reduce(lambda x, y: x*y, self.distances)**power
        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x*weight
        return result_x

233
    def get_distance_array(self, distribution_strategy):
theos's avatar
theos committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        """
            Calculates an n-dimensional array with its entries being the
            lengths of the k-vectors from the zero point of the grid.

            Parameters
            ----------
            None : All information is taken from the parent object.

            Returns
            -------
            nkdict : distributed_data_object
        """
        shape = self.shape
        # prepare the distributed_data_object
        nkdict = distributed_data_object(
                        global_shape=shape,
                        dtype=np.float128,
                        distribution_strategy=distribution_strategy)

        if distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            # get the node's individual slice of the first dimension
            slice_of_first_dimension = slice(
                                    *nkdict.distributor.local_slice[0:2])
        elif distribution_strategy in DISTRIBUTION_STRATEGIES['not']:
            slice_of_first_dimension = slice(0, shape[0])
        else:
260
261
            raise ValueError(
                "Unsupported distribution strategy")
theos's avatar
theos committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        dists = self._distance_array_helper(slice_of_first_dimension)
        nkdict.set_local_data(dists)

        return nkdict

    def _distance_array_helper(self, slice_of_first_dimension):
        dk = self.distances
        shape = self.shape

        inds = []
        for a in shape:
            inds += [slice(0, a)]

        cords = np.ogrid[inds]

        dists = ((np.float128(0) + cords[0] - shape[0] // 2) * dk[0])**2
        # apply zerocenterQ shift
        if self.zerocenter[0] == False:
            dists = np.fft.fftshift(dists)
        # only save the individual slice
        dists = dists[slice_of_first_dimension]
        for ii in range(1, len(shape)):
            temp = ((cords[ii] - shape[ii] // 2) * dk[ii])**2
            if self.zerocenter[ii] == False:
                temp = np.fft.fftshift(temp)
            dists = dists + temp
        dists = np.sqrt(dists)
        return dists

291
    def get_fft_smoothing_kernel_function(self, sigma):
theos's avatar
theos committed
292
293
294
295
296
        if sigma is None:
            sigma = np.sqrt(2) * np.max(self.distances)

        return lambda x: np.exp(-2. * np.pi**2 * x**2 * sigma**2)

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    # ---Added properties and methods---

    @property
    def distances(self):
        return self._distances

    @property
    def zerocenter(self):
        return self._zerocenter

    def _parse_shape(self, shape):
        if np.isscalar(shape):
            shape = (shape,)
        temp = np.empty(len(shape), dtype=np.int)
        temp[:] = shape
        return tuple(temp)

    def _parse_distances(self, distances):
        if distances is None:
            if self.harmonic:
                temp = np.ones_like(self.shape, dtype=np.float)
            else:
                temp = 1 / np.array(self.shape, dtype=np.float)
        else:
            temp = np.empty(len(self.shape), dtype=np.float)
            temp[:] = distances
        return tuple(temp)

    def _parse_zerocenter(self, zerocenter):
        temp = np.empty(len(self.shape), dtype=bool)
        temp[:] = zerocenter
        return tuple(temp)
329
330
331
332
333
334
335
336
337
338
339
340
341
342

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group['serialized'] = [
            pickle.dumps(getattr(self, item)) for item in self._serializable
        ]
        return None

    @classmethod
    def _from_hdf5(cls, hdf5_group, loopback_get):
        result = cls(
            *[pickle.loads(item) for item in hdf5_group['serialized']])
        return result