hp_space.py 6.38 KB
Newer Older
csongor's avatar
csongor committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
#
# Copyright (C) 2015 Max-Planck-Society
#
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  lm
    ..                               /______/

    NIFTY submodule for grids on the two-sphere.

"""
from __future__ import division

36 37
import pickle

csongor's avatar
csongor committed
38
import numpy as np
39

40
import d2o
41
from keepers import Versionable
42

43
from nifty.spaces.space import Space
44
from nifty.config import nifty_configuration as gc, \
csongor's avatar
csongor committed
45 46 47 48
                         dependency_injector as gdi

hp = gdi.get('healpy')

49

50
class HPSpace(Versionable, Space):
csongor's avatar
csongor committed
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    """
        ..        __
        ..      /  /
        ..     /  /___    ______
        ..    /   _   | /   _   |
        ..   /  / /  / /  /_/  /
        ..  /__/ /__/ /   ____/  space class
        ..           /__/

        NIFTY subclass for HEALPix discretizations of the two-sphere [#]_.

        Parameters
        ----------
        nside : int
            Resolution parameter for the HEALPix discretization, resulting in
            ``12*nside**2`` pixels.

        See Also
        --------
        gl_space : A class for the Gauss-Legendre discretization of the
            sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only powers of two are allowed for `nside`.

        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_

        Attributes
        ----------
        para : numpy.ndarray
            Array containing the number `nside`.
        dtype : numpy.dtype
            Data type of the field values, which is always numpy.float64.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array with one element containing the pixel size.
    """

100 101
    _serializable = ('nside', 'dtype')

102 103
    # ---Overwritten properties and methods---

104
    def __init__(self, nside=2, dtype=np.dtype('float')):
csongor's avatar
csongor committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        """
            Sets the attributes for a hp_space class instance.

            Parameters
            ----------
            nside : int
                Resolution parameter for the HEALPix discretization, resulting
                in ``12*nside**2`` pixels.

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the healpy module is not available.
            ValueError
                If input `nside` is invaild.

        """
        # check imports
        if not gc['use_healpy']:
128
            raise ImportError("healpy not available or not loaded.")
csongor's avatar
csongor committed
129

130
        super(HPSpace, self).__init__(dtype)
csongor's avatar
csongor committed
131

132
        self._nside = self._parse_nside(nside)
csongor's avatar
csongor committed
133

134 135 136 137 138
    # ---Mandatory properties and methods---

    @property
    def harmonic(self):
        return False
csongor's avatar
csongor committed
139 140 141

    @property
    def shape(self):
142
        return (np.int(12 * self.nside ** 2),)
csongor's avatar
csongor committed
143 144

    @property
Jait Dixit's avatar
Jait Dixit committed
145
    def dim(self):
146
        return np.int(12 * self.nside ** 2)
csongor's avatar
csongor committed
147

148 149 150
    @property
    def total_volume(self):
        return 4 * np.pi
151

152 153 154 155
    def copy(self):
        return self.__class__(nside=self.nside,
                              dtype=self.dtype)

156
    def weight(self, x, power=1, axes=None, inplace=False):
157
        weight = ((4*np.pi) / (12 * self.nside**2)) ** power
158 159 160 161 162 163 164 165

        if inplace:
            x *= weight
            result_x = x
        else:
            result_x = x * weight

        return result_x
166

167
    def get_distance_array(self, distribution_strategy):
theos's avatar
theos committed
168 169 170 171 172 173 174 175 176 177 178
        """
        Calculates distance from center to all the points on the sphere

        Parameters
        ----------
        distribution_strategy: Result d2o's distribution strategy

        Returns
        -------
        dists: distributed_data_object
        """
179
        dists = d2o.arange(
180
            start=0, stop=self.shape[0],
theos's avatar
theos committed
181 182 183
            distribution_strategy=distribution_strategy
        )

184 185 186
        # translate distances to 3D unit vectors on a sphere,
        # extract the first entry (simulates the scalar product with (1,0,0))
        # and apply arccos
theos's avatar
theos committed
187
        dists = dists.apply_scalar_function(
188 189
                    lambda z: np.arccos(hp.pix2vec(self.nside, z)[0]),
                    dtype=np.float)
theos's avatar
theos committed
190 191 192

        return dists

193
    def get_fft_smoothing_kernel_function(self, sigma):
Jait Dixit's avatar
Jait Dixit committed
194
        if sigma is None:
195
            sigma = np.sqrt(2) * np.pi
Jait Dixit's avatar
Jait Dixit committed
196 197

        return lambda x: np.exp((-0.5 * x**2) / sigma**2)
theos's avatar
theos committed
198

199 200 201 202 203 204 205 206 207
    # ---Added properties and methods---

    @property
    def nside(self):
        return self._nside

    def _parse_nside(self, nside):
        nside = int(nside)
        if nside & (nside - 1) != 0 or nside < 2:
208 209
            raise ValueError(
                "nside must be positive and a multiple of 2.")
210
        return nside
211 212 213 214 215 216 217 218 219 220 221 222 223 224

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group['serialized'] = [
            pickle.dumps(getattr(self, item)) for item in self._serializable
        ]
        return None

    @classmethod
    def _from_hdf5(cls, hdf5_group, loopback_get):
        result = cls(
            *[pickle.loads(item) for item in hdf5_group['serialized']])
        return result