gl_space.py 6.63 KB
Newer Older
csongor's avatar
csongor committed
1 2
from __future__ import division

3 4
import pickle

Jait Dixit's avatar
Jait Dixit committed
5
import itertools
csongor's avatar
csongor committed
6 7
import numpy as np

8 9
import d2o
from d2o import STRATEGIES as DISTRIBUTION_STRATEGIES
10
from keepers import Versionable
csongor's avatar
csongor committed
11

12
from nifty.spaces.space import Space
13
from nifty.config import nifty_configuration as gc,\
14
                         dependency_injector as gdi
15
import nifty.nifty_utilities as utilities
csongor's avatar
csongor committed
16 17 18 19 20

gl = gdi.get('libsharp_wrapper_gl')

GL_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']

21

22
class GLSpace(Versionable, Space):
csongor's avatar
csongor committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    """
        ..                 __
        ..               /  /
        ..     ____ __  /  /
        ..   /   _   / /  /
        ..  /  /_/  / /  /_
        ..  \___   /  \___/  space class
        .. /______/

        NIFTY subclass for Gauss-Legendre pixelizations [#]_ of the two-sphere.

        Parameters
        ----------
        nlat : int
            Number of latitudinal bins, or rings.
        nlon : int, *optional*
            Number of longitudinal bins (default: ``2*nlat - 1``).
        dtype : numpy.dtype, *optional*
            Data type of the field values (default: numpy.float64).

        See Also
        --------
        hp_space : A class for the HEALPix discretization of the sphere [#]_.
        lm_space : A class for spherical harmonic components.

        Notes
        -----
        Only real-valued fields on the two-sphere are supported, i.e.
        `dtype` has to be either numpy.float64 or numpy.float32.

        References
        ----------
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.

        Attributes
        ----------
        para : numpy.ndarray
            One-dimensional array containing the two numbers `nlat` and `nlon`.
        dtype : numpy.dtype
            Data type of the field values.
        discrete : bool
            Whether or not the underlying space is discrete, always ``False``
            for spherical spaces.
        vol : numpy.ndarray
            An array containing the pixel sizes.
    """

75 76
    _serializable = ('nlat', 'nlon', 'dtype')

77 78
    # ---Overwritten properties and methods---

79
    def __init__(self, nlat=2, nlon=None, dtype=np.dtype('float')):
csongor's avatar
csongor committed
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        """
            Sets the attributes for a gl_space class instance.

            Parameters
            ----------
            nlat : int
                Number of latitudinal bins, or rings.
            nlon : int, *optional*
                Number of longitudinal bins (default: ``2*nlat - 1``).
            dtype : numpy.dtype, *optional*
                Data type of the field values (default: numpy.float64).

            Returns
            -------
            None

            Raises
            ------
            ImportError
                If the libsharp_wrapper_gl module is not available.
            ValueError
                If input `nlat` is invaild.

        """
        # check imports
        if not gc['use_libsharp']:
106 107
            raise ImportError(
                "libsharp_wrapper_gl not available or not loaded.")
108 109

        super(GLSpace, self).__init__(dtype)
csongor's avatar
csongor committed
110

111 112
        self._nlat = self._parse_nlat(nlat)
        self._nlon = self._parse_nlon(nlon)
csongor's avatar
csongor committed
113

114
    # ---Mandatory properties and methods---
csongor's avatar
csongor committed
115

116 117 118
    @property
    def harmonic(self):
        return False
csongor's avatar
csongor committed
119 120 121

    @property
    def shape(self):
122
        return (np.int((self.nlat * self.nlon)),)
csongor's avatar
csongor committed
123

124
    @property
125
    def dim(self):
126
        return np.int((self.nlat * self.nlon))
127 128 129 130

    @property
    def total_volume(self):
        return 4 * np.pi
131

132 133 134 135 136
    def copy(self):
        return self.__class__(nlat=self.nlat,
                              nlon=self.nlon,
                              dtype=self.dtype)

Jait Dixit's avatar
Jait Dixit committed
137
    def weight(self, x, power=1, axes=None, inplace=False):
138
        axes = utilities.cast_axis_to_tuple(axes, length=1)
139

140 141
        nlon = self.nlon
        nlat = self.nlat
142 143

        weight = np.array(list(itertools.chain.from_iterable(
144 145
            itertools.repeat(x ** power, nlon)
            for x in gl.vol(nlat))))
Jait Dixit's avatar
Jait Dixit committed
146 147 148

        if axes is not None:
            # reshape the weight array to match the input shape
149
            new_shape = np.ones(len(x.shape), dtype=np.int)
Jait Dixit's avatar
Jait Dixit committed
150 151 152 153 154 155 156
            for index in range(len(axes)):
                new_shape[index] = len(weight)
            weight = weight.reshape(new_shape)

        if inplace:
            x *= weight
            result_x = x
csongor's avatar
csongor committed
157
        else:
Jait Dixit's avatar
Jait Dixit committed
158
            result_x = x * weight
csongor's avatar
csongor committed
159

Jait Dixit's avatar
Jait Dixit committed
160
        return result_x
161

162
    def get_distance_array(self, distribution_strategy):
163 164
        dists = d2o.arange(start=0, stop=self.shape[0],
                           distribution_strategy=distribution_strategy)
165

166
        dists = dists.apply_scalar_function(
167
            lambda x: self._distance_array_helper(divmod(x, self.nlon)),
168
            dtype=np.float)
169 170 171

        return dists

theos's avatar
theos committed
172
    def _distance_array_helper(self, qr_tuple):
173 174
        lat = qr_tuple[0]*(np.pi/(self.nlat-1))
        lon = qr_tuple[1]*(2*np.pi/(self.nlon-1))
175 176 177
        numerator = np.sqrt(np.sin(lat)**2 +
                            (np.sin(lon) * np.cos(lat))**2)
        denominator = np.cos(lon) * np.cos(lat)
178

theos's avatar
theos committed
179
        return np.arctan(numerator / denominator)
180

181
    def get_fft_smoothing_kernel_function(self, sigma):
Jait Dixit's avatar
Jait Dixit committed
182
        if sigma is None:
183
            sigma = np.sqrt(2) * np.pi
Jait Dixit's avatar
Jait Dixit committed
184 185

        return lambda x: np.exp((-0.5 * x**2) / sigma**2)
186

187 188 189 190 191 192 193 194 195 196 197 198 199
    # ---Added properties and methods---

    @property
    def nlat(self):
        return self._nlat

    @property
    def nlon(self):
        return self._nlon

    def _parse_nlat(self, nlat):
        nlat = int(nlat)
        if nlat < 2:
200 201
            raise ValueError(
                "nlat must be a positive number.")
202
        elif nlat % 2 != 0:
203 204
            raise ValueError(
                "nlat must be a multiple of 2.")
205 206 207 208 209 210 211 212
        return nlat

    def _parse_nlon(self, nlon):
        if nlon is None:
            nlon = 2 * self.nlat - 1
        else:
            nlon = int(nlon)
            if nlon != 2 * self.nlat - 1:
213 214
                self.logger.warn("nlon was set to an unrecommended value: "
                                 "nlon <> 2*nlat-1.")
215
        return nlon
216 217 218 219 220 221 222 223 224 225 226 227 228 229

    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
        hdf5_group['serialized'] = [
            pickle.dumps(getattr(self, item)) for item in self._serializable
        ]
        return None

    @classmethod
    def _from_hdf5(cls, hdf5_group, loopback_get):
        result = cls(
            *[pickle.loads(item) for item in hdf5_group['serialized']])
        return result