rg_transforms.py 24.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

19
20
21
22
import warnings

import numpy as np
from d2o import distributed_data_object, STRATEGIES
23
from nifty.config import dependency_injector as gdi
24
import nifty.nifty_utilities as utilities
25

26
from keepers import Loggable
27
28
29
30

pyfftw = gdi.get('pyfftw')


31
class Transform(Loggable, object):
Jait Dixit's avatar
Jait Dixit committed
32
33
34
35
    """
        A generic fft object without any implementation.
    """

36
    def __init__(self, domain, codomain):
Jait Dixit's avatar
Jait Dixit committed
37
38
        self.domain = domain
        self.codomain = codomain
39

Jait Dixit's avatar
Jait Dixit committed
40
41
42
43
44
        # initialize the dictionary which stores the values from
        # get_centering_mask
        self.centering_mask_dict = {}

    def get_centering_mask(self, to_center_input, dimensions_input,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
                           offset_input=False):
        """
            Computes the mask, used to (de-)zerocenter domain and target
            fields.

            Parameters
            ----------
            to_center_input : tuple, list, numpy.ndarray
                A tuple of booleans which dimensions should be
                zero-centered.

            dimensions_input : tuple, list, numpy.ndarray
                A tuple containing the mask's desired shape.

            offset_input : int, boolean
                Specifies whether the zero-th dimension starts with an odd
                or and even index, i.e. if it is shifted.

            Returns
            -------
            result : np.ndarray
                A 1/-1-alternating mask.
        """
        # cast input
        to_center = np.array(to_center_input)
        dimensions = np.array(dimensions_input)

        # if none of the dimensions are zero centered, return a 1
        if np.all(to_center == 0):
            return 1

        if np.all(dimensions == np.array(1)) or \
                np.all(dimensions == np.array([1])):
            return dimensions
        # The dimensions of size 1 must be sorted out for computing the
        # centering_mask. The depth of the array will be restored in the
        # end.
        size_one_dimensions = []
        temp_dimensions = []
        temp_to_center = []
        for i in range(len(dimensions)):
            if dimensions[i] == 1:
                size_one_dimensions += [True]
            else:
                size_one_dimensions += [False]
                temp_dimensions += [dimensions[i]]
                temp_to_center += [to_center[i]]
        dimensions = np.array(temp_dimensions)
        to_center = np.array(temp_to_center)
        # cast the offset_input into the shape of to_center
        offset = np.zeros(to_center.shape, dtype=int)
Theo Steininger's avatar
Theo Steininger committed
96
97
98
99
        # if the first dimension has length 1 and has an offset, restore the
        # global minus by hand
        if not size_one_dimensions[0]:
            offset[0] = int(offset_input)
100
101
102
103
104
105
106
107
108
        # check for dimension match
        if to_center.size != dimensions.size:
            raise TypeError(
                'The length of the supplied lists does not match.')

        # build up the value memory
        # compute an identifier for the parameter set
        temp_id = tuple(
            (tuple(to_center), tuple(dimensions), tuple(offset)))
Jait Dixit's avatar
Jait Dixit committed
109
        if temp_id not in self.centering_mask_dict:
110
111
112
113
            # use np.tile in order to stack the core alternation scheme
            # until the desired format is constructed.
            core = np.fromfunction(
                lambda *args: (-1) **
Jait Dixit's avatar
Jait Dixit committed
114
115
116
117
118
                              (np.tensordot(to_center,
                                            args +
                                            offset.reshape(offset.shape +
                                                           (1,) *
                                                           (np.array(
119
                                                              args).ndim - 1)),
Jait Dixit's avatar
Jait Dixit committed
120
                                            1)),
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                (2,) * to_center.size)
            # Cast the core to the smallest integers we can get
            core = core.astype(np.int8)

            centering_mask = np.tile(core, dimensions // 2)
            # for the dimensions of odd size corresponding slices must be
            # added
            for i in range(centering_mask.ndim):
                # check if the size of the certain dimension is odd or even
                if (dimensions % 2)[i] == 0:
                    continue
                # prepare the slice object
                temp_slice = (slice(None),) * i + (slice(-2, -1, 1),) + \
                             (slice(None),) * (centering_mask.ndim - 1 - i)
                # append the slice to the centering_mask
                centering_mask = np.append(centering_mask,
                                           centering_mask[temp_slice],
                                           axis=i)
            # Add depth to the centering_mask where the length of a
            # dimension was one
            temp_slice = ()
            for i in range(len(size_one_dimensions)):
                if size_one_dimensions[i]:
                    temp_slice += (None,)
                else:
                    temp_slice += (slice(None),)
            centering_mask = centering_mask[temp_slice]
Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
            # if the first dimension has length 1 and has an offset, restore
            # the global minus by hand
            if size_one_dimensions[0] and offset_input:
                centering_mask *= -1

Jait Dixit's avatar
Jait Dixit committed
153
154
            self.centering_mask_dict[temp_id] = centering_mask
        return self.centering_mask_dict[temp_id]
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    def _apply_mask(self, val, mask, axes):
        """
            Apply centering mask to an array.

            Parameters
            ----------
            val: distributed_data_object or numpy.ndarray
                The value-array on which the mask should be applied.

            mask: numpy.ndarray
                The mask to be applied.

            axes: tuple
                The axes which are to be transformed.

            Returns
            -------
            distributed_data_object or np.nd_array
                Mask input array by multiplying it with the mask.
        """
        # reshape mask if necessary
        if axes:
            mask = mask.reshape(
                [y if x in axes else 1
Jait Dixit's avatar
Jait Dixit committed
180
                 for x, y in enumerate(val.shape)]
181
182
183
            )
        return val * mask

Theo Steininger's avatar
Theo Steininger committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    def transform(self, val, axes, **kwargs):
        """
            A generic ff-transform function.

            Parameters
            ----------
            field_val : distributed_data_object
                The value-array of the field which is supposed to
                be transformed.

            domain : nifty.rg.nifty_rg.rg_space
                The domain of the space which should be transformed.

            codomain : nifty.rg.nifty_rg.rg_space
                The taget into which the field should be transformed.
        """
        raise NotImplementedError


class FFTW(Transform):
    """
        The pyfftw pendant of a fft object.
    """

    def __init__(self, domain, codomain):

        if 'pyfftw' not in gdi:
            raise ImportError("The module pyfftw is needed but not available.")

        super(FFTW, self).__init__(domain, codomain)

        # Enable caching for pyfftw.interfaces
        pyfftw.interfaces.cache.enable()

        # The plan_dict stores the FFTWTransformInfo objects which correspond
        # to a certain set of (field_val, domain, codomain) sets.
        self.info_dict = {}

    def _get_transform_info(self, domain, codomain, axes, local_shape,
                            local_offset_Q, is_local, transform_shape=None,
                            **kwargs):
        # generate a id-tuple which identifies the domain-codomain setting
        temp_id = (domain.__hash__() ^
                   (101 * codomain.__hash__()) ^
                   (211 * transform_shape.__hash__()) ^
                   (131 * is_local.__hash__())
                   )

        # generate the plan_and_info object if not already there
        if temp_id not in self.info_dict:
            if is_local:
                self.info_dict[temp_id] = FFTWLocalTransformInfo(
                    domain, codomain, axes, local_shape,
                    local_offset_Q, self, **kwargs
                )
            else:
                self.info_dict[temp_id] = FFTWMPITransfromInfo(
                    domain, codomain, axes, local_shape,
                    local_offset_Q, self, transform_shape, **kwargs
                )

        return self.info_dict[temp_id]

247
248
    def _atomic_mpi_transform(self, val, info, axes):
        # Apply codomain centering mask
249
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
250
251
252
253
254
255
            temp_val = np.copy(val)
            val = self._apply_mask(temp_val, info.cmask_codomain, axes)

        p = info.plan
        # Load the value into the plan
        if p.has_input:
256
            p.input_array[None] = val
257
258
259
260
261
262
263
264
265
        # Execute the plan
        p()

        if p.has_output:
            result = p.output_array
        else:
            return None

        # Apply domain centering mask
266
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            result = self._apply_mask(result, info.cmask_domain, axes)

        # Correct the sign if needed
        result *= info.sign

        return result

    def _local_transform(self, val, axes, **kwargs):
        ####
        # val must be numpy array or d2o with slicing distributor
        ###

        try:
            local_val = val.get_local_data(copy=False)
        except(AttributeError):
            local_val = val
Jait Dixit's avatar
Jait Dixit committed
283

284
285
        current_info = self._get_transform_info(self.domain,
                                                self.codomain,
286
                                                axes,
287
                                                local_shape=local_val.shape,
Jait Dixit's avatar
Jait Dixit committed
288
                                                local_offset_Q=False,
289
290
291
292
                                                is_local=True,
                                                **kwargs)

        # Apply codomain centering mask
293
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
294
295
296
297
298
299
300
301
302
303
304
            temp_val = np.copy(local_val)
            local_val = self._apply_mask(temp_val,
                                         current_info.cmask_codomain, axes)

        local_result = current_info.fftw_interface(
            local_val,
            axes=axes,
            planner_effort='FFTW_ESTIMATE'
        )

        # Apply domain centering mask
305
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
306
307
308
309
310
311
312
313
314
            local_result = self._apply_mask(local_result,
                                            current_info.cmask_domain, axes)

        # Correct the sign if needed
        if current_info.sign != 1:
            local_result *= current_info.sign

        try:
            # Create return object and insert results inplace
Theo Steininger's avatar
Theo Steininger committed
315
            result_dtype = np.result_type(np.complex, self.codomain.dtype)
316
            return_val = val.copy_empty(global_shape=val.shape,
Theo Steininger's avatar
Theo Steininger committed
317
                                        dtype=result_dtype)
318
319
320
321
322
323
324
325
            return_val.set_local_data(data=local_result, copy=False)
        except(AttributeError):
            return_val = local_result

        return return_val

    def _repack_to_fftw_and_transform(self, val, axes, **kwargs):
        temp_val = val.copy_empty(distribution_strategy='fftw')
326
        self.logger.info("Repacking d2o to fftw distribution strategy")
327
328
329
330
331
332
333
334
335
336
337
338
339
        temp_val.set_full_data(val, copy=False)

        # Recursive call to transform
        result = self.transform(temp_val, axes, **kwargs)

        return_val = result.copy_empty(
            distribution_strategy=val.distribution_strategy)
        return_val.set_full_data(data=result, copy=False)

        return return_val

    def _mpi_transform(self, val, axes, **kwargs):

Jait Dixit's avatar
Jait Dixit committed
340
341
342
343
        local_offset_list = np.cumsum(
            np.concatenate([[0, ], val.distributor.all_local_slices[:, 2]])
        )
        local_offset_Q = bool(local_offset_list[val.distributor.comm.rank] % 2)
Theo Steininger's avatar
Theo Steininger committed
344
        result_dtype = np.result_type(np.complex, self.codomain.dtype)
345
        return_val = val.copy_empty(global_shape=val.shape,
Theo Steininger's avatar
Theo Steininger committed
346
                                    dtype=result_dtype)
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

        # Extract local data
        local_val = val.get_local_data(copy=False)

        # Create temporary storage for slices
        temp_val = None

        # If axes tuple includes all axes, set it to None
        if axes is not None:
            if set(axes) == set(range(len(val.shape))):
                axes = None

        current_info = None
        for slice_list in utilities.get_slice_list(local_val.shape, axes):
            if slice_list == [slice(None, None)]:
                inp = local_val
            else:
                if temp_val is None:
Jait Dixit's avatar
Jait Dixit committed
365
366
                    temp_val = np.empty_like(
                        local_val,
Theo Steininger's avatar
Theo Steininger committed
367
                        dtype=result_dtype
Jait Dixit's avatar
Jait Dixit committed
368
                    )
369
370
371
372
373
374
375
376
377
378
379
                inp = local_val[slice_list]

            # This is in order to make FFTW behave properly when slicing input
            # over MPI ranks when the input is 1-dimensional. The default
            # behaviour is to optimize to take advantage of byte-alignment,
            # which doesn't match the slicing strategy for multi-dimensional
            # data.
            original_shape = None
            if len(inp.shape) == 1:
                original_shape = inp.shape
                inp = inp.reshape(inp.shape[0], 1)
Theo Steininger's avatar
Theo Steininger committed
380
                axes = (0, )
381
382

            if current_info is None:
383
384
385
                transform_shape = list(inp.shape)
                transform_shape[0] = val.shape[0]

386
387
388
                current_info = self._get_transform_info(
                    self.domain,
                    self.codomain,
389
                    axes,
390
391
392
                    local_shape=val.local_shape,
                    local_offset_Q=local_offset_Q,
                    is_local=False,
393
                    transform_shape=tuple(transform_shape),
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
                    **kwargs
                )

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                result = self._atomic_mpi_transform(inp, current_info, axes)

            if result is None:
                temp_val = np.empty_like(local_val)
            elif slice_list == [slice(None, None)]:
                temp_val = result
            else:
                # Reverting to the original shape i.e. before the input was
                # augmented with 1 to make FFTW behave properly.
                if original_shape is not None:
                    result = result.reshape(original_shape)
                temp_val[slice_list] = result

        return_val.set_local_data(data=temp_val, copy=False)

        return return_val

Jait Dixit's avatar
Jait Dixit committed
416
    def transform(self, val, axes, **kwargs):
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        """
            The pyfftw transform function.

            Parameters
            ----------
            val : distributed_data_object or numpy.ndarray
                The value-array of the field which is supposed to
                be transformed.

            axes: tuple, None
                The axes which should be transformed.

            **kwargs : *optional*
                Further kwargs are passed to the create_mpi_plan routine.

            Returns
            -------
            result : np.ndarray or distributed_data_object
                Fourier-transformed pendant of the input field.
        """
        # Check if the axes provided are valid given the shape
        if axes is not None and \
                not all(axis in range(len(val.shape)) for axis in axes):
440
            raise ValueError("Provided axes does not match array shape")
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

        # If the input is a numpy array we transform it locally
        if not isinstance(val, distributed_data_object):
            # Cast to a np.ndarray
            temp_val = np.asarray(val)

            # local transform doesn't apply transforms inplace
            return_val = self._local_transform(temp_val, axes)
        else:
            if val.distribution_strategy in STRATEGIES['slicing']:
                if axes is None or 0 in axes:
                    if val.distribution_strategy != 'fftw':
                        return_val = \
                            self._repack_to_fftw_and_transform(
                                val, axes, **kwargs
                            )
                    else:
                        return_val = self._mpi_transform(
                            val, axes, **kwargs
                        )
                else:
                    return_val = self._local_transform(
                        val, axes, **kwargs
                    )
            else:
                return_val = self._repack_to_fftw_and_transform(
                    val, axes, **kwargs
                )

        return return_val


class FFTWTransformInfo(object):
474
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
475
                 local_offset_Q, fftw_context, **kwargs):
476
477
478
        if pyfftw is None:
            raise ImportError("The module pyfftw is needed but not available.")

Theo Steininger's avatar
Theo Steininger committed
479
480
481
        shape = (local_shape if axes is None else
                 [y for x, y in enumerate(local_shape) if x in axes])

Theo Steininger's avatar
Theo Steininger committed
482
483
484
        self._cmask_domain = fftw_context.get_centering_mask(domain.zerocenter,
                                                             shape,
                                                             local_offset_Q)
485

Theo Steininger's avatar
Theo Steininger committed
486
487
488
489
        self._cmask_codomain = fftw_context.get_centering_mask(
                                                         codomain.zerocenter,
                                                         shape,
                                                         local_offset_Q)
490
491
492

        # If both domain and codomain are zero-centered the result,
        # will get a global minus. Store the sign to correct it.
Theo Steininger's avatar
Theo Steininger committed
493
494
495
        self._sign = (-1) ** np.sum(np.array(domain.zerocenter) *
                                    np.array(codomain.zerocenter) *
                                    (np.array(domain.shape) // 2 % 2))
496
497
498

    @property
    def cmask_domain(self):
Theo Steininger's avatar
Theo Steininger committed
499
        return self._cmask_domain
500
501
502

    @property
    def cmask_codomain(self):
Theo Steininger's avatar
Theo Steininger committed
503
        return self._cmask_codomain
504
505
506
507
508
509
510

    @property
    def sign(self):
        return self._sign


class FFTWLocalTransformInfo(FFTWTransformInfo):
511
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
512
                 local_offset_Q, fftw_context, **kwargs):
513
514
        super(FFTWLocalTransformInfo, self).__init__(domain,
                                                     codomain,
515
                                                     axes,
516
517
                                                     local_shape,
                                                     local_offset_Q,
Jait Dixit's avatar
Jait Dixit committed
518
                                                     fftw_context,
519
520
521
522
523
524
525
526
527
528
529
530
                                                     **kwargs)
        if codomain.harmonic:
            self._fftw_interface = pyfftw.interfaces.numpy_fft.fftn
        else:
            self._fftw_interface = pyfftw.interfaces.numpy_fft.ifftn

    @property
    def fftw_interface(self):
        return self._fftw_interface


class FFTWMPITransfromInfo(FFTWTransformInfo):
531
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
532
                 local_offset_Q, fftw_context, transform_shape, **kwargs):
533
534
        super(FFTWMPITransfromInfo, self).__init__(domain,
                                                   codomain,
535
                                                   axes,
536
537
                                                   local_shape,
                                                   local_offset_Q,
Jait Dixit's avatar
Jait Dixit committed
538
                                                   fftw_context,
539
540
541
542
543
544
545
546
547
548
549
550
551
552
                                                   **kwargs)
        self._plan = pyfftw.create_mpi_plan(
            input_shape=transform_shape,
            input_dtype='complex128',
            output_dtype='complex128',
            direction='FFTW_FORWARD' if codomain.harmonic else 'FFTW_BACKWARD',
            flags=["FFTW_ESTIMATE"],
            **kwargs
        )

    @property
    def plan(self):
        return self._plan

Jait Dixit's avatar
Jait Dixit committed
553

Theo Steininger's avatar
Theo Steininger committed
554
class NUMPYFFT(Transform):
Jait Dixit's avatar
Jait Dixit committed
555
    """
Theo Steininger's avatar
Theo Steininger committed
556
        The numpy fft pendant of a fft object.
Jait Dixit's avatar
Jait Dixit committed
557
558
559
560
561
562
563
564
565
566

        Parameters
        ----------
        fft_module_name : String
            Switch between the gfft module used: 'gfft' and 'gfft_dummy'

    """

    def transform(self, val, axes, **kwargs):
        """
Theo Steininger's avatar
Theo Steininger committed
567
            The pyfftw transform function.
Jait Dixit's avatar
Jait Dixit committed
568
569
570

            Parameters
            ----------
Theo Steininger's avatar
Theo Steininger committed
571
            val : distributed_data_object or numpy.ndarray
Jait Dixit's avatar
Jait Dixit committed
572
573
574
                The value-array of the field which is supposed to
                be transformed.

Theo Steininger's avatar
Theo Steininger committed
575
            axes: tuple, None
Jait Dixit's avatar
Jait Dixit committed
576
577
578
                The axes which should be transformed.

            **kwargs : *optional*
Theo Steininger's avatar
Theo Steininger committed
579
                Further kwargs are passed to the create_mpi_plan routine.
Jait Dixit's avatar
Jait Dixit committed
580
581
582
583
584
585
586
587
588

            Returns
            -------
            result : np.ndarray or distributed_data_object
                Fourier-transformed pendant of the input field.
        """
        # Check if the axes provided are valid given the shape
        if axes is not None and \
                not all(axis in range(len(val.shape)) for axis in axes):
589
            raise ValueError("Provided axes does not match array shape")
Jait Dixit's avatar
Jait Dixit committed
590

Theo Steininger's avatar
Theo Steininger committed
591
        result_dtype = np.result_type(np.complex, self.codomain.dtype)
Theo Steininger's avatar
Theo Steininger committed
592
593
        return_val = val.copy_empty(global_shape=val.shape,
                                    dtype=result_dtype)
Jait Dixit's avatar
Jait Dixit committed
594

Theo Steininger's avatar
Theo Steininger committed
595
596
        if (axes is None) or (0 in axes) or \
           (val.distribution_strategy not in STRATEGIES['slicing']):
Jait Dixit's avatar
Jait Dixit committed
597

Theo Steininger's avatar
Theo Steininger committed
598
599
            if val.distribution_strategy == 'not':
                local_val = val.get_local_data(copy=False)
Jait Dixit's avatar
Jait Dixit committed
600
            else:
Theo Steininger's avatar
Theo Steininger committed
601
602
603
604
605
606
                local_val = val.get_full_data()

            result_data = self._atomic_transform(local_val=local_val,
                                                 axes=axes,
                                                 local_offset_Q=False)
            return_val.set_full_data(result_data, copy=False)
Jait Dixit's avatar
Jait Dixit committed
607
608

        else:
Theo Steininger's avatar
Theo Steininger committed
609
610
611
612
613
614
615
616
617
618
619
620
            local_offset_list = np.cumsum(
                    np.concatenate([[0, ],
                                    val.distributor.all_local_slices[:, 2]]))
            local_offset_Q = \
                bool(local_offset_list[val.distributor.comm.rank] % 2)

            local_val = val.get_local_data()
            result_data = self._atomic_transform(local_val=local_val,
                                                 axes=axes,
                                                 local_offset_Q=local_offset_Q)

            return_val.set_local_data(result_data, copy=False)
Jait Dixit's avatar
Jait Dixit committed
621
622

        return return_val
Theo Steininger's avatar
Theo Steininger committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

    def _atomic_transform(self, local_val, axes, local_offset_Q):

        # some auxiliaries for the mask computation
        local_shape = local_val.shape
        shape = (local_shape if axes is None else
                 [y for x, y in enumerate(local_shape) if x in axes])

        # Apply codomain centering mask
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
            temp_val = np.copy(local_val)
            mask = self.get_centering_mask(self.codomain.zerocenter,
                                           shape,
                                           local_offset_Q)
            local_val = self._apply_mask(temp_val, mask, axes)

        # perform the transformation
        result_val = np.fft.fftn(local_val, axes=axes)

        # Apply domain centering mask
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
            mask = self.get_centering_mask(self.domain.zerocenter,
                                           shape,
                                           local_offset_Q)
            result_val = self._apply_mask(result_val, mask, axes)

        # If both domain and codomain are zero-centered the result,
        # will get a global minus. Store the sign to correct it.
        sign = (-1) ** np.sum(np.array(self.domain.zerocenter) *
                              np.array(self.codomain.zerocenter) *
                              (np.array(self.domain.shape) // 2 % 2))
        if sign != 1:
            result_val *= sign

        return result_val