rg_transforms.py 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

19 20 21 22
import warnings

import numpy as np
from d2o import distributed_data_object, STRATEGIES
23
from nifty.config import dependency_injector as gdi
24
import nifty.nifty_utilities as utilities
25

26
from keepers import Loggable
27 28 29 30

pyfftw = gdi.get('pyfftw')


31
class Transform(Loggable, object):
Jait Dixit's avatar
Jait Dixit committed
32 33 34 35
    """
        A generic fft object without any implementation.
    """

36
    def __init__(self, domain, codomain):
Jait Dixit's avatar
Jait Dixit committed
37 38
        self.domain = domain
        self.codomain = codomain
39

Jait Dixit's avatar
Jait Dixit committed
40 41 42 43 44
        # initialize the dictionary which stores the values from
        # get_centering_mask
        self.centering_mask_dict = {}

    def get_centering_mask(self, to_center_input, dimensions_input,
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
                           offset_input=False):
        """
            Computes the mask, used to (de-)zerocenter domain and target
            fields.

            Parameters
            ----------
            to_center_input : tuple, list, numpy.ndarray
                A tuple of booleans which dimensions should be
                zero-centered.

            dimensions_input : tuple, list, numpy.ndarray
                A tuple containing the mask's desired shape.

            offset_input : int, boolean
                Specifies whether the zero-th dimension starts with an odd
                or and even index, i.e. if it is shifted.

            Returns
            -------
            result : np.ndarray
                A 1/-1-alternating mask.
        """
        # cast input
        to_center = np.array(to_center_input)
        dimensions = np.array(dimensions_input)

        # if none of the dimensions are zero centered, return a 1
        if np.all(to_center == 0):
            return 1

        if np.all(dimensions == np.array(1)) or \
                np.all(dimensions == np.array([1])):
            return dimensions
        # The dimensions of size 1 must be sorted out for computing the
        # centering_mask. The depth of the array will be restored in the
        # end.
        size_one_dimensions = []
        temp_dimensions = []
        temp_to_center = []
        for i in range(len(dimensions)):
            if dimensions[i] == 1:
                size_one_dimensions += [True]
            else:
                size_one_dimensions += [False]
                temp_dimensions += [dimensions[i]]
                temp_to_center += [to_center[i]]
        dimensions = np.array(temp_dimensions)
        to_center = np.array(temp_to_center)
        # cast the offset_input into the shape of to_center
        offset = np.zeros(to_center.shape, dtype=int)
Theo Steininger's avatar
Theo Steininger committed
96 97 98 99
        # if the first dimension has length 1 and has an offset, restore the
        # global minus by hand
        if not size_one_dimensions[0]:
            offset[0] = int(offset_input)
100 101 102 103 104 105 106 107 108
        # check for dimension match
        if to_center.size != dimensions.size:
            raise TypeError(
                'The length of the supplied lists does not match.')

        # build up the value memory
        # compute an identifier for the parameter set
        temp_id = tuple(
            (tuple(to_center), tuple(dimensions), tuple(offset)))
Jait Dixit's avatar
Jait Dixit committed
109
        if temp_id not in self.centering_mask_dict:
110 111 112 113
            # use np.tile in order to stack the core alternation scheme
            # until the desired format is constructed.
            core = np.fromfunction(
                lambda *args: (-1) **
Jait Dixit's avatar
Jait Dixit committed
114 115 116 117 118
                              (np.tensordot(to_center,
                                            args +
                                            offset.reshape(offset.shape +
                                                           (1,) *
                                                           (np.array(
119
                                                              args).ndim - 1)),
Jait Dixit's avatar
Jait Dixit committed
120
                                            1)),
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                (2,) * to_center.size)
            # Cast the core to the smallest integers we can get
            core = core.astype(np.int8)

            centering_mask = np.tile(core, dimensions // 2)
            # for the dimensions of odd size corresponding slices must be
            # added
            for i in range(centering_mask.ndim):
                # check if the size of the certain dimension is odd or even
                if (dimensions % 2)[i] == 0:
                    continue
                # prepare the slice object
                temp_slice = (slice(None),) * i + (slice(-2, -1, 1),) + \
                             (slice(None),) * (centering_mask.ndim - 1 - i)
                # append the slice to the centering_mask
                centering_mask = np.append(centering_mask,
                                           centering_mask[temp_slice],
                                           axis=i)
            # Add depth to the centering_mask where the length of a
            # dimension was one
            temp_slice = ()
            for i in range(len(size_one_dimensions)):
                if size_one_dimensions[i]:
                    temp_slice += (None,)
                else:
                    temp_slice += (slice(None),)
            centering_mask = centering_mask[temp_slice]
Theo Steininger's avatar
Theo Steininger committed
148 149 150 151 152
            # if the first dimension has length 1 and has an offset, restore
            # the global minus by hand
            if size_one_dimensions[0] and offset_input:
                centering_mask *= -1

Jait Dixit's avatar
Jait Dixit committed
153 154
            self.centering_mask_dict[temp_id] = centering_mask
        return self.centering_mask_dict[temp_id]
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

    def _apply_mask(self, val, mask, axes):
        """
            Apply centering mask to an array.

            Parameters
            ----------
            val: distributed_data_object or numpy.ndarray
                The value-array on which the mask should be applied.

            mask: numpy.ndarray
                The mask to be applied.

            axes: tuple
                The axes which are to be transformed.

            Returns
            -------
            distributed_data_object or np.nd_array
                Mask input array by multiplying it with the mask.
        """
        # reshape mask if necessary
        if axes:
            mask = mask.reshape(
                [y if x in axes else 1
Jait Dixit's avatar
Jait Dixit committed
180
                 for x, y in enumerate(val.shape)]
181 182 183
            )
        return val * mask

Theo Steininger's avatar
Theo Steininger committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def transform(self, val, axes, **kwargs):
        """
            A generic ff-transform function.

            Parameters
            ----------
            field_val : distributed_data_object
                The value-array of the field which is supposed to
                be transformed.

            domain : nifty.rg.nifty_rg.rg_space
                The domain of the space which should be transformed.

            codomain : nifty.rg.nifty_rg.rg_space
                The taget into which the field should be transformed.
        """
        raise NotImplementedError


class FFTW(Transform):
    """
        The pyfftw pendant of a fft object.
    """

    def __init__(self, domain, codomain):

        if 'pyfftw' not in gdi:
            raise ImportError("The module pyfftw is needed but not available.")

        super(FFTW, self).__init__(domain, codomain)

        # Enable caching for pyfftw.interfaces
        pyfftw.interfaces.cache.enable()

        # The plan_dict stores the FFTWTransformInfo objects which correspond
        # to a certain set of (field_val, domain, codomain) sets.
        self.info_dict = {}

    def _get_transform_info(self, domain, codomain, axes, local_shape,
                            local_offset_Q, is_local, transform_shape=None,
                            **kwargs):
        # generate a id-tuple which identifies the domain-codomain setting
        temp_id = (domain.__hash__() ^
                   (101 * codomain.__hash__()) ^
                   (211 * transform_shape.__hash__()) ^
                   (131 * is_local.__hash__())
                   )

        # generate the plan_and_info object if not already there
        if temp_id not in self.info_dict:
            if is_local:
                self.info_dict[temp_id] = FFTWLocalTransformInfo(
                    domain, codomain, axes, local_shape,
                    local_offset_Q, self, **kwargs
                )
            else:
                self.info_dict[temp_id] = FFTWMPITransfromInfo(
                    domain, codomain, axes, local_shape,
                    local_offset_Q, self, transform_shape, **kwargs
                )

        return self.info_dict[temp_id]

247 248
    def _atomic_mpi_transform(self, val, info, axes):
        # Apply codomain centering mask
249
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
250 251 252 253 254 255
            temp_val = np.copy(val)
            val = self._apply_mask(temp_val, info.cmask_codomain, axes)

        p = info.plan
        # Load the value into the plan
        if p.has_input:
256
            p.input_array[None] = val
257 258 259 260 261 262 263 264 265
        # Execute the plan
        p()

        if p.has_output:
            result = p.output_array
        else:
            return None

        # Apply domain centering mask
266
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            result = self._apply_mask(result, info.cmask_domain, axes)

        # Correct the sign if needed
        result *= info.sign

        return result

    def _local_transform(self, val, axes, **kwargs):
        ####
        # val must be numpy array or d2o with slicing distributor
        ###

        try:
            local_val = val.get_local_data(copy=False)
        except(AttributeError):
            local_val = val
Jait Dixit's avatar
Jait Dixit committed
283

284 285
        current_info = self._get_transform_info(self.domain,
                                                self.codomain,
286
                                                axes,
287
                                                local_shape=local_val.shape,
Jait Dixit's avatar
Jait Dixit committed
288
                                                local_offset_Q=False,
289 290 291 292
                                                is_local=True,
                                                **kwargs)

        # Apply codomain centering mask
293
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
294 295 296 297 298 299 300 301 302 303 304
            temp_val = np.copy(local_val)
            local_val = self._apply_mask(temp_val,
                                         current_info.cmask_codomain, axes)

        local_result = current_info.fftw_interface(
            local_val,
            axes=axes,
            planner_effort='FFTW_ESTIMATE'
        )

        # Apply domain centering mask
305
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
306 307 308 309 310 311 312 313 314
            local_result = self._apply_mask(local_result,
                                            current_info.cmask_domain, axes)

        # Correct the sign if needed
        if current_info.sign != 1:
            local_result *= current_info.sign

        try:
            # Create return object and insert results inplace
Theo Steininger's avatar
Theo Steininger committed
315
            result_dtype = np.result_type(np.complex, self.codomain.dtype)
316
            return_val = val.copy_empty(global_shape=val.shape,
Theo Steininger's avatar
Theo Steininger committed
317
                                        dtype=result_dtype)
318 319 320 321 322 323 324 325
            return_val.set_local_data(data=local_result, copy=False)
        except(AttributeError):
            return_val = local_result

        return return_val

    def _repack_to_fftw_and_transform(self, val, axes, **kwargs):
        temp_val = val.copy_empty(distribution_strategy='fftw')
326
        self.logger.info("Repacking d2o to fftw distribution strategy")
327 328 329 330 331 332 333 334 335 336 337 338 339
        temp_val.set_full_data(val, copy=False)

        # Recursive call to transform
        result = self.transform(temp_val, axes, **kwargs)

        return_val = result.copy_empty(
            distribution_strategy=val.distribution_strategy)
        return_val.set_full_data(data=result, copy=False)

        return return_val

    def _mpi_transform(self, val, axes, **kwargs):

Jait Dixit's avatar
Jait Dixit committed
340 341 342 343
        local_offset_list = np.cumsum(
            np.concatenate([[0, ], val.distributor.all_local_slices[:, 2]])
        )
        local_offset_Q = bool(local_offset_list[val.distributor.comm.rank] % 2)
Theo Steininger's avatar
Theo Steininger committed
344
        result_dtype = np.result_type(np.complex, self.codomain.dtype)
345
        return_val = val.copy_empty(global_shape=val.shape,
Theo Steininger's avatar
Theo Steininger committed
346
                                    dtype=result_dtype)
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

        # Extract local data
        local_val = val.get_local_data(copy=False)

        # Create temporary storage for slices
        temp_val = None

        # If axes tuple includes all axes, set it to None
        if axes is not None:
            if set(axes) == set(range(len(val.shape))):
                axes = None

        current_info = None
        for slice_list in utilities.get_slice_list(local_val.shape, axes):
            if slice_list == [slice(None, None)]:
                inp = local_val
            else:
                if temp_val is None:
Jait Dixit's avatar
Jait Dixit committed
365 366
                    temp_val = np.empty_like(
                        local_val,
Theo Steininger's avatar
Theo Steininger committed
367
                        dtype=result_dtype
Jait Dixit's avatar
Jait Dixit committed
368
                    )
369 370 371 372 373 374 375 376 377 378 379
                inp = local_val[slice_list]

            # This is in order to make FFTW behave properly when slicing input
            # over MPI ranks when the input is 1-dimensional. The default
            # behaviour is to optimize to take advantage of byte-alignment,
            # which doesn't match the slicing strategy for multi-dimensional
            # data.
            original_shape = None
            if len(inp.shape) == 1:
                original_shape = inp.shape
                inp = inp.reshape(inp.shape[0], 1)
Theo Steininger's avatar
Theo Steininger committed
380
                axes = (0, )
381 382

            if current_info is None:
383 384 385
                transform_shape = list(inp.shape)
                transform_shape[0] = val.shape[0]

386 387 388
                current_info = self._get_transform_info(
                    self.domain,
                    self.codomain,
389
                    axes,
390 391 392
                    local_shape=val.local_shape,
                    local_offset_Q=local_offset_Q,
                    is_local=False,
393
                    transform_shape=tuple(transform_shape),
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
                    **kwargs
                )

            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                result = self._atomic_mpi_transform(inp, current_info, axes)

            if result is None:
                temp_val = np.empty_like(local_val)
            elif slice_list == [slice(None, None)]:
                temp_val = result
            else:
                # Reverting to the original shape i.e. before the input was
                # augmented with 1 to make FFTW behave properly.
                if original_shape is not None:
                    result = result.reshape(original_shape)
                temp_val[slice_list] = result

        return_val.set_local_data(data=temp_val, copy=False)

        return return_val

Jait Dixit's avatar
Jait Dixit committed
416
    def transform(self, val, axes, **kwargs):
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        """
            The pyfftw transform function.

            Parameters
            ----------
            val : distributed_data_object or numpy.ndarray
                The value-array of the field which is supposed to
                be transformed.

            axes: tuple, None
                The axes which should be transformed.

            **kwargs : *optional*
                Further kwargs are passed to the create_mpi_plan routine.

            Returns
            -------
            result : np.ndarray or distributed_data_object
                Fourier-transformed pendant of the input field.
        """
        # Check if the axes provided are valid given the shape
        if axes is not None and \
                not all(axis in range(len(val.shape)) for axis in axes):
440
            raise ValueError("Provided axes does not match array shape")
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

        # If the input is a numpy array we transform it locally
        if not isinstance(val, distributed_data_object):
            # Cast to a np.ndarray
            temp_val = np.asarray(val)

            # local transform doesn't apply transforms inplace
            return_val = self._local_transform(temp_val, axes)
        else:
            if val.distribution_strategy in STRATEGIES['slicing']:
                if axes is None or 0 in axes:
                    if val.distribution_strategy != 'fftw':
                        return_val = \
                            self._repack_to_fftw_and_transform(
                                val, axes, **kwargs
                            )
                    else:
                        return_val = self._mpi_transform(
                            val, axes, **kwargs
                        )
                else:
                    return_val = self._local_transform(
                        val, axes, **kwargs
                    )
            else:
                return_val = self._repack_to_fftw_and_transform(
                    val, axes, **kwargs
                )

        return return_val


class FFTWTransformInfo(object):
474
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
475
                 local_offset_Q, fftw_context, **kwargs):
476 477 478
        if pyfftw is None:
            raise ImportError("The module pyfftw is needed but not available.")

Theo Steininger's avatar
Theo Steininger committed
479 480 481
        shape = (local_shape if axes is None else
                 [y for x, y in enumerate(local_shape) if x in axes])

Theo Steininger's avatar
Theo Steininger committed
482 483 484
        self._cmask_domain = fftw_context.get_centering_mask(domain.zerocenter,
                                                             shape,
                                                             local_offset_Q)
485

Theo Steininger's avatar
Theo Steininger committed
486 487 488 489
        self._cmask_codomain = fftw_context.get_centering_mask(
                                                         codomain.zerocenter,
                                                         shape,
                                                         local_offset_Q)
490 491 492

        # If both domain and codomain are zero-centered the result,
        # will get a global minus. Store the sign to correct it.
Theo Steininger's avatar
Theo Steininger committed
493 494 495
        self._sign = (-1) ** np.sum(np.array(domain.zerocenter) *
                                    np.array(codomain.zerocenter) *
                                    (np.array(domain.shape) // 2 % 2))
496 497 498

    @property
    def cmask_domain(self):
Theo Steininger's avatar
Theo Steininger committed
499
        return self._cmask_domain
500 501 502

    @property
    def cmask_codomain(self):
Theo Steininger's avatar
Theo Steininger committed
503
        return self._cmask_codomain
504 505 506 507 508 509 510

    @property
    def sign(self):
        return self._sign


class FFTWLocalTransformInfo(FFTWTransformInfo):
511
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
512
                 local_offset_Q, fftw_context, **kwargs):
513 514
        super(FFTWLocalTransformInfo, self).__init__(domain,
                                                     codomain,
515
                                                     axes,
516 517
                                                     local_shape,
                                                     local_offset_Q,
Jait Dixit's avatar
Jait Dixit committed
518
                                                     fftw_context,
519 520 521 522 523 524 525 526 527 528 529 530
                                                     **kwargs)
        if codomain.harmonic:
            self._fftw_interface = pyfftw.interfaces.numpy_fft.fftn
        else:
            self._fftw_interface = pyfftw.interfaces.numpy_fft.ifftn

    @property
    def fftw_interface(self):
        return self._fftw_interface


class FFTWMPITransfromInfo(FFTWTransformInfo):
531
    def __init__(self, domain, codomain, axes, local_shape,
Jait Dixit's avatar
Jait Dixit committed
532
                 local_offset_Q, fftw_context, transform_shape, **kwargs):
533 534
        super(FFTWMPITransfromInfo, self).__init__(domain,
                                                   codomain,
535
                                                   axes,
536 537
                                                   local_shape,
                                                   local_offset_Q,
Jait Dixit's avatar
Jait Dixit committed
538
                                                   fftw_context,
539 540 541 542 543 544 545 546 547 548 549 550 551 552
                                                   **kwargs)
        self._plan = pyfftw.create_mpi_plan(
            input_shape=transform_shape,
            input_dtype='complex128',
            output_dtype='complex128',
            direction='FFTW_FORWARD' if codomain.harmonic else 'FFTW_BACKWARD',
            flags=["FFTW_ESTIMATE"],
            **kwargs
        )

    @property
    def plan(self):
        return self._plan

Jait Dixit's avatar
Jait Dixit committed
553

Theo Steininger's avatar
Theo Steininger committed
554
class NUMPYFFT(Transform):
Jait Dixit's avatar
Jait Dixit committed
555
    """
Theo Steininger's avatar
Theo Steininger committed
556
        The numpy fft pendant of a fft object.
Jait Dixit's avatar
Jait Dixit committed
557 558 559 560 561 562 563 564 565 566

        Parameters
        ----------
        fft_module_name : String
            Switch between the gfft module used: 'gfft' and 'gfft_dummy'

    """

    def transform(self, val, axes, **kwargs):
        """
Theo Steininger's avatar
Theo Steininger committed
567
            The pyfftw transform function.
Jait Dixit's avatar
Jait Dixit committed
568 569 570

            Parameters
            ----------
Theo Steininger's avatar
Theo Steininger committed
571
            val : distributed_data_object or numpy.ndarray
Jait Dixit's avatar
Jait Dixit committed
572 573 574
                The value-array of the field which is supposed to
                be transformed.

Theo Steininger's avatar
Theo Steininger committed
575
            axes: tuple, None
Jait Dixit's avatar
Jait Dixit committed
576 577 578
                The axes which should be transformed.

            **kwargs : *optional*
Theo Steininger's avatar
Theo Steininger committed
579
                Further kwargs are passed to the create_mpi_plan routine.
Jait Dixit's avatar
Jait Dixit committed
580 581 582 583 584 585 586 587 588

            Returns
            -------
            result : np.ndarray or distributed_data_object
                Fourier-transformed pendant of the input field.
        """
        # Check if the axes provided are valid given the shape
        if axes is not None and \
                not all(axis in range(len(val.shape)) for axis in axes):
589
            raise ValueError("Provided axes does not match array shape")
Jait Dixit's avatar
Jait Dixit committed
590

Theo Steininger's avatar
Theo Steininger committed
591
        result_dtype = np.result_type(np.complex, self.codomain.dtype)
Theo Steininger's avatar
Theo Steininger committed
592 593
        return_val = val.copy_empty(global_shape=val.shape,
                                    dtype=result_dtype)
Jait Dixit's avatar
Jait Dixit committed
594

Theo Steininger's avatar
Theo Steininger committed
595 596
        if (axes is None) or (0 in axes) or \
           (val.distribution_strategy not in STRATEGIES['slicing']):
Jait Dixit's avatar
Jait Dixit committed
597

Theo Steininger's avatar
Theo Steininger committed
598 599
            if val.distribution_strategy == 'not':
                local_val = val.get_local_data(copy=False)
Jait Dixit's avatar
Jait Dixit committed
600
            else:
Theo Steininger's avatar
Theo Steininger committed
601 602 603 604 605 606
                local_val = val.get_full_data()

            result_data = self._atomic_transform(local_val=local_val,
                                                 axes=axes,
                                                 local_offset_Q=False)
            return_val.set_full_data(result_data, copy=False)
Jait Dixit's avatar
Jait Dixit committed
607 608

        else:
Theo Steininger's avatar
Theo Steininger committed
609 610 611 612 613 614 615 616 617 618 619 620
            local_offset_list = np.cumsum(
                    np.concatenate([[0, ],
                                    val.distributor.all_local_slices[:, 2]]))
            local_offset_Q = \
                bool(local_offset_list[val.distributor.comm.rank] % 2)

            local_val = val.get_local_data()
            result_data = self._atomic_transform(local_val=local_val,
                                                 axes=axes,
                                                 local_offset_Q=local_offset_Q)

            return_val.set_local_data(result_data, copy=False)
Jait Dixit's avatar
Jait Dixit committed
621 622

        return return_val
Theo Steininger's avatar
Theo Steininger committed
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

    def _atomic_transform(self, local_val, axes, local_offset_Q):

        # some auxiliaries for the mask computation
        local_shape = local_val.shape
        shape = (local_shape if axes is None else
                 [y for x, y in enumerate(local_shape) if x in axes])

        # Apply codomain centering mask
        if reduce(lambda x, y: x + y, self.codomain.zerocenter):
            temp_val = np.copy(local_val)
            mask = self.get_centering_mask(self.codomain.zerocenter,
                                           shape,
                                           local_offset_Q)
            local_val = self._apply_mask(temp_val, mask, axes)

        # perform the transformation
        result_val = np.fft.fftn(local_val, axes=axes)

        # Apply domain centering mask
        if reduce(lambda x, y: x + y, self.domain.zerocenter):
            mask = self.get_centering_mask(self.domain.zerocenter,
                                           shape,
                                           local_offset_Q)
            result_val = self._apply_mask(result_val, mask, axes)

        # If both domain and codomain are zero-centered the result,
        # will get a global minus. Store the sign to correct it.
        sign = (-1) ** np.sum(np.array(self.domain.zerocenter) *
                              np.array(self.codomain.zerocenter) *
                              (np.array(self.domain.shape) // 2 % 2))
        if sign != 1:
            result_val *= sign

        return result_val