nifty_mpi_data.py 53.8 KB
Newer Older
ultimanet's avatar
ultimanet committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2015 Max-Planck-Society
##
## Author: Theo Steininger
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.


ultimanet's avatar
ultimanet committed
24
25
26
27
28

##initialize the 'found-packages'-dictionary 
found = {}

import numpy as np
Ultimanet's avatar
Ultimanet committed
29
from nifty_about import about
ultimanet's avatar
ultimanet committed
30
31

try:
32
    from mpi4py import MPI
ultimanet's avatar
ultimanet committed
33
34
    found[MPI] = True
except(ImportError): 
35
    import mpi_dummy as MPI
ultimanet's avatar
ultimanet committed
36
37
38
39
40
41
42
43
44
    found[MPI] = False

try:
    import pyfftw
    found['pyfftw'] = True
except(ImportError):       
    found['pyfftw'] = False

try:
45
    import h5py
ultimanet's avatar
ultimanet committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    found['h5py'] = True
    found['h5py_parallel'] = h5py.get_config().mpi
except(ImportError):
    found['h5py'] = False
    found['h5py_parallel'] = False

   


class distributed_data_object(object):
    """

        NIFTY class for distributed data

        Parameters
        ----------
        global_data : {tuple, list, numpy.ndarray} *at least 1-dimensional*
            Initial data which will be casted to a numpy.ndarray and then 
            stored according to the distribution strategy. The global_data's
            shape overwrites global_shape.
        global_shape : tuple of ints, *optional*
            If no global_data is supplied, global_shape can be used to
            initialize an empty distributed_data_object
        dtype : type, *optional*
            If an explicit dtype is supplied, the given global_data will be 
            casted to it.            
        distribution_strategy : {'fftw' (default), 'not'}, *optional*
            Specifies the way, how global_data will be distributed to the 
            individual nodes. 
            'fftw' follows the distribution strategy of pyfftw.
            'not' does not distribute the data at all. 
            

        Attributes
        ----------
        data : numpy.ndarray
            The numpy.ndarray in which the individual node's data is stored.
        dtype : type
            Data type of the data object.
        distribution_strategy : string
            Name of the used distribution_strategy
        distributor : distributor
            The distributor object which takes care of all distribution and 
            consolidation of the data. 
        shape : tuple of int
            The global shape of the data
            
        Raises
        ------
        TypeError : 
            If the supplied distribution strategy is not known. 
        
    """
Ultimanet's avatar
Ultimanet committed
99
100
101
    def __init__(self,  global_data=None, global_shape=None, dtype=None, 
                 distribution_strategy='fftw', hermitian=False, 
                 *args, **kwargs):
ultimanet's avatar
ultimanet committed
102
        if global_data != None:
103
104
105
106
107
            if np.array(global_data).shape == ():
                global_data_input = None
                dtype = np.array(global_data).dtype.type
            else:
                global_data_input = np.array(global_data, copy=True, order='C')
ultimanet's avatar
ultimanet committed
108
109
        else:
            global_data_input = None
110

Ultimanet's avatar
Ultimanet committed
111
112
113
114
115
116
117
118
        self.hermitian = False

        self.distributor = self._get_distributor(distribution_strategy)(
                            global_data=global_data_input, 
                            global_shape=global_shape, 
                            dtype=dtype, **kwargs)
        self.set_full_data(data=global_data_input, hermitian=hermitian, 
                           **kwargs)
ultimanet's avatar
ultimanet committed
119
        
120
            
ultimanet's avatar
ultimanet committed
121
122
123
124
        self.distribution_strategy = distribution_strategy
        self.dtype = self.distributor.dtype
        self.shape = self.distributor.global_shape
        
125
126
        self.init_args = args 
        self.init_kwargs = kwargs
127
128
129
        
        ## If the input data was a scalar, set the whole array to this value
        if global_data != None and np.array(global_data).shape == ():
Ultimanet's avatar
Ultimanet committed
130
131
132
            temp = np.empty(self.distributor.local_shape)
            temp.fill(global_data)
            self.set_local_data(temp)
133
            self.hermitian = True
134
        
Ultimanet's avatar
Ultimanet committed
135
136
137
138
139
140
141
142
143
    def copy(self, dtype=None, distribution_strategy=None, **kwargs):
        temp_d2o = self.copy_empty(dtype=dtype, 
                                   distribution_strategy=distribution_strategy, 
                                   **kwargs)     
        if distribution_strategy == None or \
            distribution_strategy == self.distribution_strategy:
            temp_d2o.set_local_data(self.get_local_data(), copy=True)
        else:
            temp_d2o.set_full_data(self.get_full_data())
144
        temp_d2o.hermitian = self.hermitian
145
146
        return temp_d2o
    
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    def copy_empty(self, global_shape=None, dtype=None, 
                   distribution_strategy=None, **kwargs):
        if global_shape == None:
            global_shape = self.shape
        if dtype == None:
            dtype = self.dtype
        if distribution_strategy == None:
            distribution_strategy = self.distribution_strategy

        kwargs.update(self.init_kwargs)
        
        temp_d2o = distributed_data_object(global_shape=global_shape,
                                           dtype=dtype,
                                           distribution_strategy=distribution_strategy,
161
                                           *self.init_args,
162
                                           **kwargs)
163
164
        return temp_d2o
    
Ultimanet's avatar
Ultimanet committed
165
166
167
168
169
170
171
172
173
174
    def apply_scalar_function(self, function, inplace=False):
        if inplace == True:        
            temp = self
        else:
            temp = self.copy_empty()

        try: 
            temp.data[:] = function(self.data)
        except:
            temp.data[:] = np.vectorize(function)(self.data)
175
        
Ultimanet's avatar
Ultimanet committed
176
177
178
179
180
181
182
        temp.hermitian = False
        return temp
    
    def apply_generator(self, generator):
        self.set_local_data(generator(self.distributor.local_shape))
        self.hermitian = False
            
ultimanet's avatar
ultimanet committed
183
184
185
186
187
188
    def __str__(self):
        return self.data.__str__()
    
    def __repr__(self):
        return '<distributed_data_object>\n'+self.data.__repr__()
    
Ultimanet's avatar
Ultimanet committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def __eq__(self, other):
        if other is None:
            return False
        try:
            assert(self.dtype == other.dtype)
            assert(self.shape == other.shape)
            assert(self.init_args == other.init_args)
            assert(self.init_kwargs == other.init_kwargs)
            assert(self.distribution_strategy == other.distribution_strategy)
            assert(np.all(self.data == other.data))
        except(AssertionError):
            return False
        else:
            return True
        

            
    
207
    def __pos__(self):
208
        temp_d2o = self.copy_empty()
209
210
211
        temp_d2o.set_local_data(data = self.get_local_data())
        return temp_d2o
        
ultimanet's avatar
ultimanet committed
212
    def __neg__(self):
213
        temp_d2o = self.copy_empty()
ultimanet's avatar
ultimanet committed
214
215
216
        temp_d2o.set_local_data(data = self.get_local_data().__neg__()) 
        return temp_d2o
    
217
218
219
220
    def __abs__(self):
        temp_d2o = self.copy_empty()
        temp_d2o.set_local_data(data = self.get_local_data().__abs__()) 
        return temp_d2o
ultimanet's avatar
ultimanet committed
221
222
            
    def __builtin_helper__(self, operator, other):
223
        temp_d2o = self.copy_empty()
Ultimanet's avatar
Ultimanet committed
224
225
226
227
228
        if not np.isscalar(other):
            new_other = self.copy_empty()
            new_other.set_full_data(np.array(other))
            other = new_other
            
ultimanet's avatar
ultimanet committed
229
230
231
232
233
234
        if isinstance(other, distributed_data_object):        
            temp_data = operator(other.get_local_data())
        else:
            temp_data = operator(other)
        temp_d2o.set_local_data(data=temp_data)
        return temp_d2o
Ultimanet's avatar
Ultimanet committed
235
236
237
238
239
240
241
242
243
244
    
    def __inplace_builtin_helper__(self, operator, other):
        if isinstance(other, distributed_data_object):        
            temp_data = operator(other.get_local_data())
        else:
            temp_data = operator(other)
        self.set_local_data(data=temp_data)
        return self
        
    
ultimanet's avatar
ultimanet committed
245
246
247
248
249
    def __add__(self, other):
        return self.__builtin_helper__(self.get_local_data().__add__, other)

    def __radd__(self, other):
        return self.__builtin_helper__(self.get_local_data().__radd__, other)
Ultimanet's avatar
Ultimanet committed
250
251
252
253
254

    def __iadd__(self, other):
        return self.__inplace_builtin_helper__(self.get_local_data().__iadd__, 
                                               other)

ultimanet's avatar
ultimanet committed
255
256
257
258
259
260
261
    def __sub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__sub__, other)
    
    def __rsub__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rsub__, other)
    
    def __isub__(self, other):
Ultimanet's avatar
Ultimanet committed
262
263
        return self.__inplace_builtin_helper__(self.get_local_data().__isub__, 
                                               other)
ultimanet's avatar
ultimanet committed
264
265
266
267
268
269
270
        
    def __div__(self, other):
        return self.__builtin_helper__(self.get_local_data().__div__, other)
    
    def __rdiv__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rdiv__, other)

Ultimanet's avatar
Ultimanet committed
271
272
273
274
    def __idiv__(self, other):
        return self.__inplace_builtin_helper__(self.get_local_data().__idiv__, 
                                               other)

ultimanet's avatar
ultimanet committed
275
    def __floordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
276
277
        return self.__builtin_helper__(self.get_local_data().__floordiv__, 
                                       other)    
ultimanet's avatar
ultimanet committed
278
    def __rfloordiv__(self, other):
Ultimanet's avatar
Ultimanet committed
279
280
281
282
283
        return self.__builtin_helper__(self.get_local_data().__rfloordiv__, 
                                       other)
    def __ifloordiv__(self, other):
        return self.__inplace_builtin_helper__(
                    self.get_local_data().__ifloordiv__, other)
ultimanet's avatar
ultimanet committed
284
285
286
287
288
289
290
291
    
    def __mul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__mul__, other)
    
    def __rmul__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rmul__, other)

    def __imul__(self, other):
Ultimanet's avatar
Ultimanet committed
292
293
294
        return self.__inplace_builtin_helper__(self.get_local_data().__imul__, 
                                               other)

ultimanet's avatar
ultimanet committed
295
296
297
298
299
300
301
    def __pow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__pow__, other)
 
    def __rpow__(self, other):
        return self.__builtin_helper__(self.get_local_data().__rpow__, other)

    def __ipow__(self, other):
Ultimanet's avatar
Ultimanet committed
302
303
304
        return self.__inplace_builtin_helper__(self.get_local_data().__ipow__, 
                                               other)
   
305
306
    def __len__(self):
        return self.shape[0]
307
    
308
309
310
    def dim(self):
        return np.prod(self.shape)
        
311
312
313
314
315
316
317
318
    def vdot(self, other):
        if isinstance(other, distributed_data_object):        
            other = other.get_local_data()
        local_vdot = np.vdot(self.get_local_data(), other)
        local_vdot_list = self.distributor._allgather(local_vdot)
        global_vdot = np.sum(local_vdot_list)
        return global_vdot
            
Ultimanet's avatar
Ultimanet committed
319

320
    
ultimanet's avatar
ultimanet committed
321
322
323
324
325
326
    def __getitem__(self, key):
        return self.get_data(key)
    
    def __setitem__(self, key, data):
        self.set_data(data, key)
        
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    def _minmaxhelper(self, function, **kwargs):
        local = function(self.data, **kwargs)
        local_list = self.distributor._allgather(local)
        global_ = function(local_list, axis=0)
        return global_
        
    def amin(self, **kwargs):
        return self._minmaxhelper(np.amin, **kwargs)

    def nanmin(self, **kwargs):
        return self._minmaxhelper(np.nanmin, **kwargs)
        
    def amax(self, **kwargs):
        return self._minmaxhelper(np.amax, **kwargs)
    
    def nanmax(self, **kwargs):
        return self._minmaxhelper(np.nanmax, **kwargs)
Ultimanet's avatar
Ultimanet committed
344
    
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    def mean(self, power=1):
        ## compute the local means and the weights for the mean-mean. 
        local_mean = np.mean(self.data**power)
        local_weight = np.prod(self.data.shape)
        ## collect the local means and cast the result to a ndarray
        local_mean_weight_list = self.distributor._allgather((local_mean, 
                                                              local_weight))
        local_mean_weight_list =np.array(local_mean_weight_list)   
        ## compute the denominator for the weighted mean-mean                                                           
        global_weight = np.sum(local_mean_weight_list[:,1])
        ## compute the numerator
        numerator = np.sum(local_mean_weight_list[:,0]*\
            local_mean_weight_list[:,1])
        global_mean = numerator/global_weight
        return global_mean

    def var(self):
        mean_of_the_square = self.mean(power=2)
        square_of_the_mean = self.mean()**2
        return mean_of_the_square - square_of_the_mean
    
    def std(self):
        return np.sqrt(self.var())
        
    def _argmin_argmax_flat_helper(self, function):
        local_argmin = function(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        return local_argmin_list
        
    def argmin_flat(self):
        local_argmin = np.argmin(self.data)
        local_argmin_value = self.data[np.unravel_index(local_argmin, 
                                                        self.data.shape)]
        globalized_local_argmin = self.distributor.globalize_flat_index(local_argmin)                                                       
        local_argmin_list = self.distributor._allgather((local_argmin_value, 
                                                         globalized_local_argmin))
        local_argmin_list = np.array(local_argmin_list, dtype=[('value', int),
                                                               ('index', int)])    
        local_argmin_list = np.sort(local_argmin_list, order=['value', 'index'])        
        return local_argmin_list[0][1]
    
    def argmax_flat(self):
        local_argmax = np.argmax(self.data)
        local_argmax_value = -self.data[np.unravel_index(local_argmax, 
                                                        self.data.shape)]
        globalized_local_argmax = self.distributor.globalize_flat_index(local_argmax)                                                       
        local_argmax_list = self.distributor._allgather((local_argmax_value, 
                                                         globalized_local_argmax))
        local_argmax_list = np.array(local_argmax_list, dtype=[('value', int),
                                                               ('index', int)])         
        return local_argmax_list[0][1]
        

    def argmin(self):    
        return np.unravel_index(self.argmin_flat(), self.shape)
    
    def argmax(self):
        return np.unravel_index(self.argmax_flat(), self.shape)
    
    def conjugate(self):
        temp_d2o = self.copy_empty()
        temp_data = np.conj(self.get_local_data())
        temp_d2o.set_local_data(temp_data)
        return temp_d2o

    
    def conj(self):
        return self.conjugate()      
        
    def median(self):
Ultimanet's avatar
Ultimanet committed
421
        about.warnings.cprint(\
422
423
424
425
            "WARNING: The current implementation of median is very expensive!")
        median = np.median(self.get_full_data())
        return median
        
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    def iscomplex(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.iscomplex(self.data))
        return temp_d2o
    
    def isreal(self):
        temp_d2o = self.copy_empty(dtype=bool)
        temp_d2o.set_local_data(np.isreal(self.data))
        return temp_d2o
    
    def is_completely_real(self):
        local_realiness = np.all(self.isreal())
        global_realiness = self.distributor._allgather(local_realiness)
        return np.all(global_realiness)
    
Ultimanet's avatar
Ultimanet committed
441
    def set_local_data(self, data, hermitian=False, copy=False):
ultimanet's avatar
ultimanet committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        """
            Stores data directly in the local data attribute. No distribution 
            is done. The shape of the data must fit the local data attributes
            shape.

            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be stored in the local data attribute.
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
457
458
        self.hermitian = hermitian
        self.data = np.array(data, dtype=self.dtype, copy=copy, order='C')
ultimanet's avatar
ultimanet committed
459
    
Ultimanet's avatar
Ultimanet committed
460
    def set_data(self, data, key, hermitian=False, *args, **kwargs):
ultimanet's avatar
ultimanet committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        """
            Stores the supplied data in the region which is specified by key. 
            The data is distributed according to the distribution strategy. If
            the individual nodes get different key-arguments. Their data is 
            processed one-by-one.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be stored in.                
            
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
480
        self.hermitian = hermitian
ultimanet's avatar
ultimanet committed
481
        (slices, sliceified) = self.__sliceify__(key)        
Ultimanet's avatar
Ultimanet committed
482
483
484
485
        self.distributor.disperse_data(data=self.data, 
                        to_slices = slices,
                        data_update = self.__enfold__(data, sliceified), 
                        *args, **kwargs)        
ultimanet's avatar
ultimanet committed
486
    
Ultimanet's avatar
Ultimanet committed
487
    def set_full_data(self, data, hermitian=False, **kwargs):
ultimanet's avatar
ultimanet committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        """
            Distributes the supplied data to the nodes. The shape of data must 
            match the shape of the distributed_data_object.
            
            Parameters
            ----------
            data : tuple, list, numpy.ndarray 
                The data which should be distributed.
            
            Notes
            -----
            set_full_data(foo) is equivalent to set_data(foo,slice(None)) but 
            faster.
        
            Returns
            -------
            None
        
        """
Ultimanet's avatar
Ultimanet committed
507
        self.hermitian = hermitian
508
        self.data = self.distributor.distribute_data(data=data, **kwargs)
ultimanet's avatar
ultimanet committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    

    def get_local_data(self, key=(slice(None),)):
        """
            Loads data directly from the local data attribute. No consolidation 
            is done. 

            Parameters
            ----------
            key : int, slice, tuple of int or slice
                The key which will be used to access the data. 
            
            Returns
            -------
            self.data[key] : numpy.ndarray
        
Ultimanet's avatar
Ultimanet committed
525
        """
ultimanet's avatar
ultimanet committed
526
527
        return self.data[key]        
        
528
    def get_data(self, key, **kwargs):
ultimanet's avatar
ultimanet committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        """
            Loads data from the region which is specified by key. The data is 
            consolidated according to the distribution strategy. If the 
            individual nodes get different key-arguments, they get individual
            data. 
            
            Parameters
            ----------
        
            key : int, slice, tuple of int or slice
                The key is the object which specifies the region, where data 
                will be loaded from.                 
            
            Returns
            -------
            global_data[key] : numpy.ndarray
        
        """
547
548
        (slices, sliceified) = self.__sliceify__(key)
        result = self.distributor.collect_data(self.data, slices, **kwargs)        
ultimanet's avatar
ultimanet committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        return self.__defold__(result, sliceified)
        
    
    
    def get_full_data(self, target_rank='all'):
        """
            Fully consolidates the distributed data. 
            
            Parameters
            ----------
            target_rank : 'all' (default), int *optional*
                If only one node should recieve the full data, it can be 
                specified here.
            
            Notes
            -----
            get_full_data() is equivalent to get_data(slice(None)) but 
            faster.
        
            Returns
            -------
            None
        """

        return self.distributor.consolidate_data(self.data, target_rank)

Ultimanet's avatar
Ultimanet committed
575
576
577
578
579
580
581
582
    def inject(self, to_slices=(slice(None),), data=None, 
               from_slices=(slice(None),)):
        if data == None:
            return self
        
        self.distributor.inject(self.data, to_slices, data, from_slices)
        
        
ultimanet's avatar
ultimanet committed
583
584
585
586
587
588
    def _get_distributor(self, distribution_strategy):
        '''
            Comments:
              - The distributor's get_data and set_data functions MUST be 
                supplied with a tuple of slice objects. In case that there was 
                a direct integer involved, the unfolding will be done by the
589
                helper functions __sliceify__, __enfold__ and __defold__.
ultimanet's avatar
ultimanet committed
590
591
592
593
594
595
596
        '''
        
        distributor_dict={
            'fftw':     _fftw_distributor,
            'not':      _not_distributor
        }
        if not distributor_dict.has_key(distribution_strategy):
Ultimanet's avatar
Ultimanet committed
597
            raise TypeError(about._errors.cstring("ERROR: Unknown distribution strategy supplied."))
ultimanet's avatar
ultimanet committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
        return distributor_dict[distribution_strategy]
      
    def save(self, alias, path=None, overwriteQ=True):
        
        """
            Saves a distributed_data_object to disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name for the dataset which is saved within the hdf5 file.
         
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
            
            overwriteQ : Boolean *optional*
                Specifies whether a dataset may be overwritten if it is already
                present in the given hdf5 file or not.
        """
        self.distributor.save_data(self.data, alias, path, overwriteQ)

    def load(self, alias, path=None):
        """
            Loads a distributed_data_object from disk utilizing h5py.
            
            Parameters
            ----------
            alias : string
                The name of the dataset which is loaded from the hdf5 file.
 
            path : string *optional*
                The path to the hdf5 file. If no path is given, the alias is 
                taken as filename in the current path.
        """
        self.data = self.distributor.load_data(alias, path)
           
    def __sliceify__(self, inp):
        sliceified = []
        result = []
        if isinstance(inp, tuple):
            x = inp
Ultimanet's avatar
Ultimanet committed
640
641
        elif isinstance(inp, list):
            x = tuple(inp)
ultimanet's avatar
ultimanet committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
        else:
            x = (inp, )
        
        for i in range(len(x)):
            if isinstance(x[i], slice):
                result += [x[i], ]
                sliceified += [False, ]
            else:
                result += [slice(x[i], x[i]+1), ]
                sliceified += [True, ]
    
        return (tuple(result), sliceified)
                
                
    def __enfold__(self, in_data, sliceified):
        data = np.array(in_data, copy=False)    
        temp_shape = ()
        j=0
        for i in sliceified:
            if i == True:
                temp_shape += (1,)
            else:
                temp_shape += (data.shape[j],)
                j += 1
        ## take into account that the sliceified tuple may be too short, because 
        ## of a non-exaustive list of slices
        for i in range(len(data.shape)-j):
            temp_shape += (data.shape[j],)
            j += 1
Ultimanet's avatar
Ultimanet committed
671
        
ultimanet's avatar
ultimanet committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        return data.reshape(temp_shape)
    
    def __defold__(self, data, sliceified):
        temp_slice = ()
        for i in sliceified:
            if i == True:
                temp_slice += (0,)
            else:
                temp_slice += (slice(None),)
        return data[temp_slice]

    

   
class _fftw_distributor(object):
687
688
    def __init__(self, global_data=None, global_shape=None, dtype=None, 
                 comm=MPI.COMM_WORLD, alias=None, path=None):
ultimanet's avatar
ultimanet committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        
        if alias != None:
            file_path = path if path != None else alias 
            if found['h5py_parallel']:
                f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(file_path, 'r')        
            dset = f[alias]        

        
        if comm.rank == 0:        
            if alias != None:
                self.global_shape = dset.shape
            else:                
703
                if global_data == None or np.array(global_data).shape == ():
ultimanet's avatar
ultimanet committed
704
                    if global_shape == None:
Ultimanet's avatar
Ultimanet committed
705
                        raise TypeError(about._errors.\
706
                        cstring("ERROR: Neither data nor shape supplied!"))
ultimanet's avatar
ultimanet committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
                    else:
                        self.global_shape = global_shape
                else:
                    self.global_shape = global_data.shape


        else:
            self.global_shape = None
        
        
        self.global_shape = comm.bcast(self.global_shape, root = 0)
        self.global_shape = tuple(self.global_shape)
        
        if comm.rank == 0:        
            if alias != None:
                self.dtype = dset.dtype.type
            else:    
                if dtype != None:        
                    self.dtype = dtype
                elif global_data != None:
                    self.dtype = np.array(global_data).dtype.type
                else:
Ultimanet's avatar
Ultimanet committed
729
                    raise TypeError(about._errors.\
730
731
                    cstring("ERROR: Failed setting datatype. Neither data, "+\
                     "nor datatype supplied."))
ultimanet's avatar
ultimanet committed
732
733
734
735
736
737
738
739
740
        else:
            self.dtype=None
        self.dtype = comm.bcast(self.dtype, root=0)
        if alias != None:        
            f.close()        
        
        self._my_dtype_converter = dtype_converter()
        
        if not self._my_dtype_converter.known_np_Q(self.dtype):
Ultimanet's avatar
Ultimanet committed
741
            raise TypeError(about._errors.cstring(\
742
            "ERROR: The datatype "+str(self.dtype)+" is not known to mpi4py."))
ultimanet's avatar
ultimanet committed
743
744
745
746
747
748
749
750
751
752

        self.mpi_dtype  = self._my_dtype_converter.to_mpi(self.dtype)
        
        self._local_size = pyfftw.local_size(self.global_shape)
        self.local_start = self._local_size[2]
        self.local_end = self.local_start + self._local_size[1]
        self.local_length = self.local_end-self.local_start        
        self.local_shape = (self.local_length,) + tuple(self.global_shape[1:])
        self.local_dim = np.product(self.local_shape)
        self.local_dim_list = np.empty(comm.size, dtype=np.int)
753
754
        comm.Allgather([np.array(self.local_dim,dtype=np.int), MPI.INT],\
            [self.local_dim_list, MPI.INT])
ultimanet's avatar
ultimanet committed
755
756
        self.local_dim_offset = np.sum(self.local_dim_list[0:comm.rank])
        
757
758
759
        self.local_slice = np.array([self.local_start, self.local_end,\
            self.local_length, self.local_dim, self.local_dim_offset],\
            dtype=np.int)
ultimanet's avatar
ultimanet committed
760
761
762
        ## collect all local_slices 
        ## [start, stop, length=stop-start, dimension, dimension_offset]
        self.all_local_slices = np.empty((comm.size,5),dtype=np.int)
763
764
        comm.Allgather([np.array((self.local_slice,),dtype=np.int), MPI.INT],\
            [self.all_local_slices, MPI.INT])
ultimanet's avatar
ultimanet committed
765
        
766
        self.comm = comm
ultimanet's avatar
ultimanet committed
767
        
768
769
770
771
772
773
    def globalize_flat_index(self, index):
        return int(index)+self.local_dim_offset
        
    def globalize_index(self, index):
        index = np.array(index, dtype=np.int).flatten()
        if index.shape != (len(self.global_shape),):
Ultimanet's avatar
Ultimanet committed
774
            raise TypeError(about._errors.cstring("ERROR: Length\
775
776
777
778
779
780
781
782
783
                of index tuple does not match the array's shape!"))                 
        globalized_index = index
        globalized_index[0] = index[0] + self.local_start
        ## ensure that the globalized index list is within the bounds
        global_index_memory = globalized_index
        globalized_index = np.clip(globalized_index, 
                                   -np.array(self.global_shape),
                                    np.array(self.global_shape)-1)
        if np.any(global_index_memory != globalized_index):
Ultimanet's avatar
Ultimanet committed
784
            about.warnings.cprint("WARNING: Indices were clipped!")
785
786
787
788
789
790
791
792
793
794
795
        globalized_index = tuple(globalized_index)
        return globalized_index
    
    def _allgather(self, thing, comm=None):
        if comm == None:
            comm = self.comm            
        gathered_things = comm.allgather(thing)
        return gathered_things
    
    def distribute_data(self, data=None, comm = None, alias=None,
                        path=None, **kwargs):
ultimanet's avatar
ultimanet committed
796
797
798
799
800
        '''
        distribute data checks 
        - whether the data is located on all nodes or only on node 0
        - that the shape of 'data' matches the global_shape
        '''
801
802
        if comm == None:
            comm = self.comm            
803
804
805
806
        rank = comm.Get_rank()
        size = comm.Get_size()        
        local_data_available_Q = np.array((int(data != None), ))
        data_available_Q = np.empty(size,dtype=int)
807
808
        comm.Allgather([local_data_available_Q, MPI.INT], 
                       [data_available_Q, MPI.INT])        
809
810
        
        if data_available_Q[0]==False and found['h5py']:
ultimanet's avatar
ultimanet committed
811
812
813
814
815
816
817
            try: 
                file_path = path if path != None else alias 
                if found['h5py_parallel']:
                    f = h5py.File(file_path, 'r', driver='mpio', comm=comm)
                else:
                    f= h5py.File(file_path, 'r')        
                dset = f[alias]
818
819
                if dset.shape == self.global_shape and \
                 dset.dtype.type == self.dtype:
ultimanet's avatar
ultimanet committed
820
821
822
823
                    temp_data = dset[self.local_start:self.local_end]
                    f.close()
                    return temp_data
                else:
Ultimanet's avatar
Ultimanet committed
824
                    raise TypeError(about._errors.cstring("ERROR: \
825
                    Input data has the wrong shape or wrong dtype!"))                 
ultimanet's avatar
ultimanet committed
826
827
828
            except(IOError, AttributeError):
                pass
            
829
        if np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
830
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
ultimanet's avatar
ultimanet committed
831
        ## if all nodes got data, we assume that it is the right data and 
832
833
        ## store it individually. If not, take the data on node 0 and scatter 
        ## it...
ultimanet's avatar
ultimanet committed
834
        if np.all(data_available_Q):
835
836
            return data[self.local_start:self.local_end].astype(self.dtype,\
                copy=False)    
837
838
        ## ... but only if node 0 has actually data!
        elif data_available_Q[0] == False:# or np.all(data_available_Q==False):
Ultimanet's avatar
Ultimanet committed
839
            return np.empty(self.local_shape, dtype=self.dtype, order='C')
840
        
ultimanet's avatar
ultimanet committed
841
842
843
844
845
        else:
            if data == None:
                data = np.empty(self.global_shape)            
            if rank == 0:
                if np.all(data.shape != self.global_shape):
Ultimanet's avatar
Ultimanet committed
846
                    raise TypeError(about._errors.cstring(\
847
                        "ERROR: Input data has the wrong shape!"))
ultimanet's avatar
ultimanet committed
848
            ## Scatter the data!            
Ultimanet's avatar
Ultimanet committed
849
            _scattered_data = np.empty(self.local_shape, dtype = self.dtype)
ultimanet's avatar
ultimanet committed
850
851
            _dim_list = self.all_local_slices[:,3]
            _dim_offset_list = self.all_local_slices[:,4]
852
853
            comm.Scatterv([data, _dim_list, _dim_offset_list, self.mpi_dtype],\
                [_scattered_data, self.mpi_dtype], root=0)
ultimanet's avatar
ultimanet committed
854
855
856
            return _scattered_data
        return None
    
Ultimanet's avatar
Ultimanet committed
857
858
    def _disperse_data_primitive(self, data, to_slices, data_update, 
                                 from_slices, source_rank='all', comm=None):
859
860
        if comm == None:
            comm = self.comm            
861
862
        ## compute the part of the slice which is relevant for the 
        ## individual node      
ultimanet's avatar
ultimanet committed
863
        localized_start, localized_stop = self._backshift_and_decycle(
Ultimanet's avatar
Ultimanet committed
864
            to_slices[0], self.local_start, self.local_end,\
865
866
                self.global_shape[0])
        local_slice = (slice(localized_start, localized_stop,\
Ultimanet's avatar
Ultimanet committed
867
                        to_slices[0].step),) + to_slices[1:]
ultimanet's avatar
ultimanet committed
868
869
870
871
872
        
        ## compute the parameter sets and list for the data splitting
        local_slice_shape = data[local_slice].shape        
        local_affected_data_length = local_slice_shape[0]
        local_affected_data_length_list=np.empty(comm.size, dtype=np.int)        
873
874
875
876
877
        comm.Allgather(\
            [np.array(local_affected_data_length, dtype=np.int), MPI.INT],\
            [local_affected_data_length_list, MPI.INT])        
        local_affected_data_length_offset_list = np.append([0],\
                            np.cumsum(local_affected_data_length_list)[:-1])
ultimanet's avatar
ultimanet committed
878
879
880
881
882
883
884
885
        
        
        if source_rank == 'all':
            ## only take the relevant part out of data_update and plug it into 
            ## data[local_slice]
            r = comm.rank
            o = local_affected_data_length_offset_list
            l = local_affected_data_length
Ultimanet's avatar
Ultimanet committed
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
            
            ## if the from_slices object is not None, i.e. only a part from
            ## the data source is used, form the update_slice accordingly
            if from_slices == None:
                update_slice = (slice(o[r], o[r]+l),)
            else:
                f_start = from_slices[0].start                
                f_step = from_slices[0].step
                if f_step == None:
                    f_step = 1
                f_direction = np.sign(f_step)
                ## combine the slicing for the first dimension 
                update_slice = (slice(f_start + f_direction*o[r],
                                      f_start + f_direction*(o[r]+l),
                                      f_step),
                                )
                ## add the rest of the from_slicing
                update_slice += from_slices[1:]
904
905
            data[local_slice] = np.array(data_update[update_slice],\
                                    copy=False).astype(self.dtype)
ultimanet's avatar
ultimanet committed
906
907
908
909
            
        else:
            ## Scatterv the relevant part from the source_rank to the others 
            ## and plug it into data[local_slice]
910
911
912
            
            ## if the first slice object has a negative step size, the ordering 
            ## of the Scatterv function must be reversed         
Ultimanet's avatar
Ultimanet committed
913
            order = to_slices[0].step
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
            if order == None:
                order = 1
            else:
                order = np.sign(order)

            local_affected_data_dim_list = \
                np.array(local_affected_data_length_list) *\
                    np.product(local_slice_shape[1:])                    

            local_affected_data_dim_offset_list = np.append([0],\
                np.cumsum(local_affected_data_dim_list[::order])[:-1])[::order]
                
            local_dispersed_data = np.zeros(local_slice_shape,\
                dtype=self.dtype)
            comm.Scatterv(\
Ultimanet's avatar
Ultimanet committed
929
930
                [np.array(data_update[from_slices],copy=False).\
                                                        astype(self.dtype),\
931
932
                    local_affected_data_dim_list,\
                    local_affected_data_dim_offset_list, self.mpi_dtype],
ultimanet's avatar
ultimanet committed
933
934
935
936
937
938
939
                          [local_dispersed_data, self.mpi_dtype], 
                          root=source_rank)                            
            data[local_slice] = local_dispersed_data
        return None
        
    
    
Ultimanet's avatar
Ultimanet committed
940
941
    def disperse_data(self, data, to_slices, data_update, from_slices=None,
                      comm=None, **kwargs):
942
943
        if comm == None:
            comm = self.comm            
Ultimanet's avatar
Ultimanet committed
944
        to_slices_list = comm.allgather(to_slices)
ultimanet's avatar
ultimanet committed
945
        ## check if all slices are the same. 
Ultimanet's avatar
Ultimanet committed
946
        if all(x == to_slices_list[0] for x in to_slices_list):
ultimanet's avatar
ultimanet committed
947
948
            ## in this case, the _disperse_data_primitive can simply be called 
            ##with target_rank = 'all'
Ultimanet's avatar
Ultimanet committed
949
950
951
952
953
954
            self._disperse_data_primitive(data = data, 
                                          to_slices = to_slices,
                                          data_update=data_update,
                                          from_slices=from_slices, 
                                          source_rank='all', 
                                          comm=comm)
955
956
        ## if the different nodes got different slices, disperse the data 
        ## individually
ultimanet's avatar
ultimanet committed
957
958
        else:
            i = 0        
Ultimanet's avatar
Ultimanet committed
959
            for temp_to_slices in to_slices_list:
ultimanet's avatar
ultimanet committed
960
                ## make the collect_data call on all nodes            
Ultimanet's avatar
Ultimanet committed
961
962
963
964
965
966
                self._disperse_data_primitive(data=data,
                                              to_slices=temp_to_slices,
                                              data_update=data_update,
                                              from_slices=from_slices,
                                              source_rank=i, 
                                              comm=comm)
ultimanet's avatar
ultimanet committed
967
968
969
                i += 1
                 
        
970
971
972
973
    def _collect_data_primitive(self, data, slice_objects, target_rank='all', comm=None):
        if comm == None:
            comm = self.comm            
            
ultimanet's avatar
ultimanet committed
974
        localized_start, localized_stop = self._backshift_and_decycle(
975
            slice_objects[0], self.local_start, self.local_end, self.global_shape[0])
ultimanet's avatar
ultimanet committed
976
977
978
979
980
981
982
983
984
985
986
        local_slice = (slice(localized_start,localized_stop,slice_objects[0].step),)+slice_objects[1:]
        local_collected_data = np.ascontiguousarray(data[local_slice])

        local_collected_data_length = local_collected_data.shape[0]
        local_collected_data_length_list=np.empty(comm.size, dtype=np.int)        
        comm.Allgather([np.array(local_collected_data_length, dtype=np.int), MPI.INT], [local_collected_data_length_list, MPI.INT])        
             
        collected_data_length = np.sum(local_collected_data_length_list) 
        collected_data_shape = (collected_data_length,)+local_collected_data.shape[1:]
        local_collected_data_dim_list= np.array(local_collected_data_length_list) * np.product(local_collected_data.shape[1:])        
        
987
988
989
990
991
992
993
994
995
996
997
        ## if the first slice object has a negative step size, the ordering 
        ## of the Gatherv functions must be reversed         
        order = slice_objects[0].step
        if order == None:
            order = 1
        else:
            order = np.sign(order)
            
        local_collected_data_dim_offset_list = np.append([0],np.cumsum(local_collected_data_dim_list[::order])[:-1])[::order]

        local_collected_data_dim_offset_list = local_collected_data_dim_offset_list
ultimanet's avatar
ultimanet committed
998
        collected_data = np.empty(collected_data_shape, dtype=self.dtype)
999
        
ultimanet's avatar
ultimanet committed
1000
1001
1002
1003
1004
1005
1006
1007
1008

        if target_rank == 'all':
            comm.Allgatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([local_collected_data, self.mpi_dtype], 
                         [collected_data, local_collected_data_dim_list, local_collected_data_dim_offset_list, self.mpi_dtype], root=target_rank)                            
        return collected_data

1009
1010
1011
    def collect_data(self, data, slice_objects, comm=None, **kwargs):
        if comm == None:
            comm = self.comm                    
ultimanet's avatar
ultimanet committed
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
        slice_objects_list = comm.allgather(slice_objects)
        ## check if all slices are the same. 
        if all(x == slice_objects_list[0] for x in slice_objects_list):
            ## in this case, the _collect_data_primitive can simply be called 
            ##with target_rank = 'all'
            return self._collect_data_primitive(data=data, slice_objects=slice_objects, target_rank='all', comm=comm)
        
        ## if the different nodes got different slices, collect the data individually
        i = 0        
        for temp_slices in slice_objects_list:
            ## make the collect_data call on all nodes            
            temp_data = self._collect_data_primitive(data=data, slice_objects=temp_slices, target_rank=i, comm=comm)
            ## save the result only on the pulling node            
            if comm.rank == i:
                individual_data = temp_data
            i += 1
        return individual_data
        
    
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    def _backshift_and_decycle(self, slice_object, shifted_start, shifted_stop, global_length):
        ## Crop the start value
        if slice_object.start > global_length-1:
            slice_object = slice(global_length-1, slice_object.stop,
                                 slice_object.step)
                                 
        ## Reformulate negative indices                                  
        if slice_object.start < 0 and slice_object.start != None:
            temp_start = slice_object.start + global_length
            if temp_start < 0:
Ultimanet's avatar
Ultimanet committed
1041
                raise ValueError(about._errors.cstring(\
1042
1043
1044
1045
1046
1047
1048
                "ERROR: Index is out of bounds!"))
            slice_object = slice(temp_start, slice_object.stop,\
            slice_object.step) 

        if slice_object.stop < 0 and slice_object.stop != None:
            temp_stop = slice_object.stop + global_length
            if temp_stop < 0:
Ultimanet's avatar
Ultimanet committed
1049
                raise ValueError(about._errors.cstring(\
1050
1051
1052
1053
1054
                "ERROR: Index is out of bounds!"))
            slice_object = slice(slice_object.start, temp_stop,\
            slice_object.step) 
                
        ## initialize the step
ultimanet's avatar
ultimanet committed
1055
1056
1057
1058
        if slice_object.step == None:
            step = 1
        else:
            step = slice_object.step
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        
        if step > 0:
            shift = shifted_start
            ## calculate the start index
            if slice_object.start == None:
                local_start = (-shift)%step ## step size compensation
            else:
                local_start = slice_object.start - shift
                ## if the local_start is negative, pull it up to zero
                local_start = local_start%step if local_start < 0 else local_start
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shift
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop
                
        else: # if step < 0
            step = -step
            local_length = shifted_stop - shifted_start
            ## calculate the start index. (Here, local_start > local_stop!)
            if slice_object.start == None:
                local_start = (local_length-1) -\
                    (global_length-shifted_stop)%step #stepsize compensation
            else:
                local_start = slice_object.start - shifted_start
                ## if the local_start is negative, pull it up to zero
                local_start = 0 if local_start < 0 else local_start                
                ## if the local_start is greater than the local length, pull
                ## it down 
                if local_start > local_length-1:
                    overhead = local_start - (local_length-1)
                    overhead = overhead - overhead%(-step)
                    local_start = local_start - overhead
            ## calculate the stop index
            if slice_object.stop == None:
                local_stop = None
            else:
                local_stop = slice_object.stop - shifted_start
                ## if local_stop is negative, pull it up to zero
                local_stop = 0 if local_stop < 0 else local_stop    
1101
        ## Note: if start or stop are greater than the array length,
ultimanet's avatar
ultimanet committed
1102
1103
1104
        ## numpy will automatically cut the index value down into the 
        ## array's range 
        return local_start, local_stop        
1105
    
Ultimanet's avatar
Ultimanet committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    def inject(self, data, to_slices, data_update, from_slices, comm=None, 
               **kwargs):
        ## check if to_key and from_key is completely build of slices 
        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(to_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The to_slices argument must be a list or tuple of slices!")
            )

        if not np.all(
            np.vectorize(lambda x: isinstance(x, slice))(from_slices)):
            raise ValueError(about._errors.cstring(
            "ERROR: The from_slices argument must be a list or tuple of slices!")
            )
            
        to_slices = tuple(to_slices)
        from_slices = tuple(from_slices)
        self.disperse_data(data = data, 
                           to_slices = to_slices,
                           data_update = data_update,
                           from_slices = from_slices,
                           comm=comm,
                           **kwargs)
        
1130
1131
1132
    def consolidate_data(self, data, target_rank='all', comm = None):
        if comm == None:
            comm = self.comm            
ultimanet's avatar
ultimanet committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
        _gathered_data = np.empty(self.global_shape, dtype=self.dtype)
        _dim_list = self.all_local_slices[:,3]
        _dim_offset_list = self.all_local_slices[:,4]
        if target_rank == 'all':
            comm.Allgatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype])                
        else:
            comm.Gatherv([data, self.mpi_dtype], 
                         [_gathered_data, _dim_list, _dim_offset_list, self.mpi_dtype],
                         root=target_rank)
        return _gathered_data
    
    if found['h5py']:
1146
1147
1148
        def save_data(self, data, alias, path=None, overwriteQ=True, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
            ## if no path and therefore no filename was given, use the alias as filename        
            use_path = alias if path==None else path
            
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(use_path, 'a', driver='mpio', comm=comm)
            else:
                f= h5py.File(use_path, 'a')
            ## check if dataset with name == alias already exists
            try: 
                f[alias]
                if overwriteQ == False: #if yes, and overwriteQ is set to False, raise an Error
Ultimanet's avatar
Ultimanet committed
1161
                    raise KeyError(about._errors.cstring("ERROR: overwriteQ == False, but alias already in use!"))
ultimanet's avatar
ultimanet committed
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
                else: # if yes, remove the existing dataset
                    del f[alias]
            except(KeyError):
                pass
            
            ## create dataset
            dset = f.create_dataset(alias, shape=self.global_shape, dtype=self.dtype)
            ## write the data
            dset[self.local_start:self.local_end] = data
            ## close the file
            f.close()
        
1174
1175
1176
        def load_data(self, alias, path, comm=None):
            if comm == None:
                comm = self.comm            
ultimanet's avatar
ultimanet committed
1177
1178
1179
1180
1181
1182
1183
1184
            ## create the file-handle
            if found['h5py_parallel']:
                f = h5py.File(path, 'r', driver='mpio', comm=comm)
            else:
                f= h5py.File(path, 'r')        
            dset = f[alias]        
            ## check shape
            if dset.shape != self.global_shape:
Ultimanet's avatar
Ultimanet committed
1185
                raise TypeError(about._errors.cstring("ERROR: The shape of the given dataset does not match the distributed_data_object."))
ultimanet's avatar
ultimanet committed
1186
1187
            ## check dtype
            if dset.dtype.type != self.dtype:
Ultimanet's avatar
Ultimanet committed
1188
                raise TypeError(about._errors.cstring("ERROR: The datatype of the given dataset does not match the distributed_data_object."))
ultimanet's avatar
ultimanet committed
1189
1190
1191
1192
1193
1194
1195
            ## if everything seems to fit, load the data
            data = dset[self.local_start:self.local_end]
            ## close the file
            f.close()
            return data
    else:
        def save_data(self, *args, **kwargs):
Ultimanet's avatar
Ultimanet committed
1196
            raise ImportError(about._errors.cstring("ERROR: h5py was not imported")) 
ultimanet's avatar
ultimanet committed
1197
        def load_data(self, *args, **kwargs):
Ultimanet's avatar
Ultimanet committed
1198
            raise ImportError(about._errors.cstring("ERROR: h5py was not imported")) 
ultimanet's avatar
ultimanet committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        
        
        
        

class _not_distributor(object):
    def __init__(self, global_data=None, global_shape=None, dtype=None, *args,  **kwargs):
        if dtype != None:        
            self.dtype = dtype
        elif global_data != None:
            self.dtype = np.array(global_data).dtype.type
            
1211
        if global_data != None and np.array(global_data).shape != ():
ultimanet's avatar
ultimanet committed
1212
1213
1214
1215
            self.global_shape = np.array(global_data).shape
        elif global_shape != None:
            self.global_shape = global_shape
        else:
Ultimanet's avatar
Ultimanet committed
1216
            raise TypeError(about._errors.cstring("ERROR: Neither data nor shape supplied!")) 
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
    
    def globalize_flat_index(self, index):
        return index
    
    def globalize_index(self, index):
        return index
    
    def _allgather(self, thing):
        return [thing,]
        
ultimanet's avatar
ultimanet committed
1227
    def distribute_data(self, data, **kwargs):
Ultimanet's avatar
Ultimanet committed
1228
1229
1230
1231
1232
        if data == None:        
            return np.zeros(self.global_shape, dtype=self.dtype)
        else:
            return np.array(data).astype(self.dtype, copy=False).\
                    reshape(self.global_shape)
ultimanet's avatar
ultimanet committed
1233
    
1234
    def disperse_data(self, data, data_update, key, **kwargs):
ultimanet's avatar
ultimanet committed
1235
1236
        data[key] = np.array(data_update, copy=False).astype(self.dtype)
                     
1237
1238
    def collect_data(self, data, slice_objects,  **kwargs):
        return data[slice_objects]
ultimanet's avatar
ultimanet committed
1239
        
1240
    def consolidate_data(self, data, **kwargs):
ultimanet's avatar
ultimanet committed
1241
        return data
Ultimanet's avatar
Ultimanet committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
        
    def inject(self, data, to_slices = (slice(None),), data_update = None, 
               from_slices = (slice(None),)):
        data[to_slices] = data_update[from_slices]
        
    def save_data(self, *args, **kwargs):
        raise AttributeError(about._errors.cstring(
                                        "ERROR: save_data not implemented")) 
    def load_data(self, *args, **kwargs):
        raise AttributeError(about._errors.cstring(
                                        "ERROR: load_data not implemented")) 
                                        
ultimanet's avatar
ultimanet committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266



class dtype_converter:
    """
        NIFTY class for dtype conversion between python/numpy dtypes and MPI
        dtypes.
    """
    
    def __init__(self):
        pre_dict = [
                    #[, MPI_CHAR],
                    #[, MPI_SIGNED_CHAR],
1267
1268
                    #[, MPI_UNSIGNED_CHAR],
                    [np.bool, MPI.BYTE],
ultimanet's avatar
ultimanet committed
1269
1270
                    [np.int16, MPI.SHORT],
                    [np.uint16, MPI.UNSIGNED_SHORT],
1271
                    [np.uint32, MPI.UNSIGNED_INT],
ultimanet's avatar
ultimanet committed
1272
                    [np.int32, MPI.INT],
1273
                    [np.int, MPI.LONG],  
ultimanet's avatar
ultimanet committed
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
                    [np.int64, MPI.LONG],
                    [np.uint64, MPI.UNSIGNED_LONG],
                    [np.int64, MPI.LONG_LONG],
                    [np.uint64, MPI.UNSIGNED_LONG_LONG],
                    [np.float32, MPI.FLOAT],
                    [np.float, MPI.DOUBLE],
                    [np.float64, MPI.DOUBLE],
                    [np.float128, MPI.LONG_DOUBLE],
                    [np.complex64, MPI.COMPLEX],
                    [np.complex, MPI.DOUBLE_COMPLEX],
                    [np.complex128, MPI.DOUBLE_COMPLEX]]
                    
        to_mpi_pre_dict = np.array(pre_dict)
        to_mpi_pre_dict[:,0] = map(self.dictionize_np, to_mpi_pre_dict[:,0])
        self._to_mpi_dict = dict(to_mpi_pre_dict)
        
        to_np_pre_dict = np.array(pre_dict)[:,::-1]
        to_np_pre_dict[:,0] = map(self.dictionize_mpi, to_np_pre_dict[:,0])
        self._to_np_dict = dict(to_np_pre_dict)

    def dictionize_np(self, x):
        return frozenset(x.__dict__.items())
        
    def dictionize_mpi(self, x):
        return x.name
    
    def to_mpi(self, dtype):
        return self._to_mpi_dict[self.dictionize_np(dtype)]

    def to_np(self, dtype):
        return self._to_np_dict[self.dictionize_mpi(dtype)]
    
    def known_mpi_Q(self, dtype):
        return self._to_np_dict.has_key(self.dictionize_mpi(dtype))
    
    def known_np_Q(self, dtype):
        return self._to_mpi_dict.has_key(self.dictionize_np(dtype))
Ultimanet's avatar
Ultimanet committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
#
#class test(object):
#    def __init__(self,x=None, *args, **kwargs):
#        self.x =x
#        print args
#        print kwargs
#    @property
#    def val(self):
#        return self.x
#    
#    @val.setter
#    def val(self, x):
#        self.x = x
#
#
#if __name__ == '__main__':    
#    comm = MPI.COMM_WORLD
#    rank = comm.rank
#    if True:
#    #if rank == 0:
#        x = np.arange(100).reshape((10,10)).astype(np.int)
#        #x = x**2
#        #x = x[::-1,::-1] + x
#        
#        #print x
#        #x = np.arange(3)
#
#
#    else:
#        x = None
#    obj = distributed_data_object(global_data=x, distribution_strategy='fftw')
#    
#    
#    #obj.load('myalias', 'mpitest.hdf5')
#    if MPI.COMM_WORLD.rank==0:
#        print ('rank', rank, vars(obj.distributor))
#    MPI.COMM_WORLD.Barrier()
#    #print ('rank', rank, vars(obj))
#    
#    MPI.COMM_WORLD.Barrier()
#    temp_erg =obj.get_full_data(target_rank='all')
#    print ('rank', rank, 'full data', np.all(temp_erg == x), temp_erg.shape)
#    #print ('rank', rank, ' local flat index: ', 1000, ' globalized: ', obj.distributor.globalize_flat_index(1000))    
#    #temp_index= (80,80,666)    
#    #print ('rank', rank, ' local index: ', temp_index, ' globalized: ', obj.distributor.globalize_index(temp_index)) 
#    
#
#    MPI.COMM_WORLD.Barrier()
#    sl = slice(13,1,-3)
#    if rank == 0:    
#        print ('erwuenscht', x[sl])
#    print obj[sl]
#    """
#    sl = slice(1,2+rank,1)
#    print ('slice', rank, sl, obj[sl,2])
#    print obj[1:5:2,1:3]
#    if rank == 0:
#        sl = (slice(1,9,2), slice(1,5,2))
#        d = [[111, 222],[333,444],[111, 222],[333,444]]
#    else:
#        sl = (slice(6,10,2), slice(1,5,2))
#        d = [[555, 666],[777,888]]
#    obj[sl] = d
#    print obj.get_full_data()    
#   """