amplitude_model.py 4.8 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20

21
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
22 23

from ..compat import *
Martin Reinecke's avatar
Martin Reinecke committed
24 25
from ..domains.power_space import PowerSpace
from ..domains.unstructured_domain import UnstructuredDomain
26
from ..field import Field
Martin Reinecke's avatar
Martin Reinecke committed
27
from ..multi.multi_field import MultiField
Martin Reinecke's avatar
Martin Reinecke committed
28
from ..multi.multi_domain import MultiDomain
29
from ..sugar import makeOp, sqrt
Martin Reinecke's avatar
Martin Reinecke committed
30
from ..operators.operator import Operator
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


def _ceps_kernel(dof_space, k, a, k0):
    return a**2/(1+(k/(k0*dof_space.bindistances[0]))**2)**2


def create_cepstrum_amplitude_field(domain, cepstrum):
    """Creates a ...
    Writes the sum of all modes into the zero-mode.

    Parameters
    ----------
    domain: ???
        ???
    cepstrum: Callable
        ???
    """

    dim = len(domain.shape)
    dist = domain.bindistances
    shape = domain.shape

    # Prepare q_array
    q_array = np.zeros((dim,) + shape)
    if dim == 1:
56
        ks = domain.get_k_length_array().to_global_data()
57 58 59 60 61
        q_array = np.array([ks])
    else:
        for i in range(dim):
            ks = np.minimum(shape[i] - np.arange(shape[i]) +
                            1, np.arange(shape[i])) * dist[i]
Martin Reinecke's avatar
Martin Reinecke committed
62
            q_array[i] += ks.reshape((1,)*i + (shape[i],) + (1,)*(dim-i-1))
63 64 65 66 67 68 69 70 71 72

    # Fill cepstrum field (all non-zero modes)
    no_zero_modes = (slice(1, None),) * dim
    ks = q_array[(slice(None),) + no_zero_modes]
    cepstrum_field = np.zeros(shape)
    cepstrum_field[no_zero_modes] = cepstrum(ks)

    # Fill cepstrum field (zero-mode subspaces)
    for i in range(dim):
        # Prepare indices
Martin Reinecke's avatar
Martin Reinecke committed
73 74 75
        fst_dims = (slice(None),)*i
        sl = fst_dims + (slice(1, None),)
        sl2 = fst_dims + (0,)
76 77 78 79

        # Do summation
        cepstrum_field[sl2] = np.sum(cepstrum_field[sl], axis=i)

80
    return Field.from_global_data(domain, cepstrum_field)
Martin Reinecke's avatar
Martin Reinecke committed
81

Martin Reinecke's avatar
Martin Reinecke committed
82

Martin Reinecke's avatar
Martin Reinecke committed
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
class AmplitudeModel(Operator):
    '''
    Computes a smooth power spectrum.
    Output lives in PowerSpace.

    Parameters
    ----------

    Npixdof : #pix in dof_space

    ceps_a, ceps_k0 : Smoothness parameters in ceps_kernel
                        eg. ceps_kernel(k) = (a/(1+(k/k0)**2))**2
                        a = ceps_a,  k0 = ceps_k0

    sm, sv : slope_mean = expected exponent of power law (e.g. -4),
                slope_variance (default=1)

    im, iv : y-intercept_mean, y-intercept_variance  of power_slope
    '''
    def __init__(self, s_space, Npixdof, ceps_a, ceps_k, sm, sv, im, iv,
Martin Reinecke's avatar
Martin Reinecke committed
103
                 keys=['tau', 'phi']):
Martin Reinecke's avatar
Martin Reinecke committed
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        from ..operators.exp_transform import ExpTransform
        from ..operators.qht_operator import QHTOperator
        from ..operators.slope_operator import SlopeOperator
        from ..operators.symmetrizing_operator import SymmetrizingOperator

        h_space = s_space.get_default_codomain()
        p_space = PowerSpace(h_space)
        self._exp_transform = ExpTransform(p_space, Npixdof)
        logk_space = self._exp_transform.domain[0]
        qht = QHTOperator(target=logk_space)
        dof_space = qht.domain[0]
        param_space = UnstructuredDomain(2)
        sym = SymmetrizingOperator(logk_space)

        phi_mean = np.array([sm, im])
        phi_sig = np.array([sv, iv])

        self._slope = SlopeOperator(param_space, logk_space, phi_sig)
Martin Reinecke's avatar
Martin Reinecke committed
122 123
        self._norm_phi_mean = Field.from_global_data(param_space,
                                                     phi_mean/phi_sig)
Martin Reinecke's avatar
Martin Reinecke committed
124

Martin Reinecke's avatar
Martin Reinecke committed
125 126
        self._domain = MultiDomain.make({keys[0]: dof_space,
                                         keys[1]: param_space})
Martin Reinecke's avatar
Martin Reinecke committed
127
        self._target = self._exp_transform.target
Martin Reinecke's avatar
Martin Reinecke committed
128 129 130 131 132 133 134 135 136 137 138 139 140 141

        kern = lambda k: _ceps_kernel(dof_space, k, ceps_a, ceps_k)
        cepstrum = create_cepstrum_amplitude_field(dof_space, kern)

        ceps = makeOp(sqrt(cepstrum))
        self._smooth_op = sym * qht * ceps
        self._keys = tuple(keys)

    def __call__(self, x):
        smooth_spec = self._smooth_op(x[self._keys[0]])
        phi = x[self._keys[1]] + self._norm_phi_mean
        linear_spec = self._slope(phi)
        loglog_spec = smooth_spec + linear_spec
        return self._exp_transform((0.5*loglog_spec).exp())