bench_gridder.py 1.67 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
from time import time

import matplotlib.pyplot as plt
import numpy as np

import nifty5 as ift

np.random.seed(40)

N0s, a0s, b0s, c0s = [], [], [], []

Martin Reinecke's avatar
Martin Reinecke committed
12
for ii in range(10, 23):
13 14
    nu = 1024
    nv = 1024
Martin Reinecke's avatar
Martin Reinecke committed
15
    N = int(2**ii)
16 17 18 19 20 21 22 23 24
    print('N = {}'.format(N))

    uv = np.random.rand(N, 2) - 0.5
    vis = np.random.randn(N) + 1j*np.random.randn(N)

    uvspace = ift.RGSpace((nu, nv))

    visspace = ift.UnstructuredDomain(N)

25
    img = np.random.randn(nu*nv)
26 27 28 29
    img = img.reshape((nu, nv))
    img = ift.from_global_data(uvspace, img)

    t0 = time()
Martin Reinecke's avatar
Martin Reinecke committed
30
    GM = ift.GridderMaker(uvspace, eps=1e-7, uv=uv)
31
    vis = ift.from_global_data(visspace, vis)
Martin Reinecke's avatar
Martin Reinecke committed
32
    op = GM.getFull().adjoint
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    t1 = time()
    op(img).to_global_data()
    t2 = time()
    op.adjoint(vis).to_global_data()
    t3 = time()
    N0s.append(N)
    a0s.append(t1 - t0)
    b0s.append(t2 - t1)
    c0s.append(t3 - t2)

print('Measure rest operator')
sc = ift.StatCalculator()
op = GM.getRest().adjoint
for _ in range(10):
    t0 = time()
    res = op(img)
    sc.add(time() - t0)
t_fft = sc.mean
print('FFT shape', res.shape)

plt.scatter(N0s, a0s, label='Gridder mr')
plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
55
# no idea why this is necessary, but if it is omitted, the range is wrong
Martin Reinecke's avatar
cleanup  
Martin Reinecke committed
56
plt.ylim(min(a0s), max(a0s))
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
plt.ylabel('time [s]')
plt.title('Initialization')
plt.loglog()
plt.savefig('bench0.png')
plt.close()

plt.scatter(N0s, b0s, color='k', marker='^', label='Gridder mr times')
plt.scatter(N0s, c0s, color='k', label='Gridder mr adjoint times')
plt.axhline(sc.mean, label='FFT')
plt.axhline(sc.mean + np.sqrt(sc.var))
plt.axhline(sc.mean - np.sqrt(sc.var))
plt.legend()
plt.ylabel('time [s]')
plt.title('Apply')
plt.loglog()
plt.savefig('bench1.png')
plt.close()