scipy_minimizer.py 4.01 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import division
from .minimizer import Minimizer
from ..field import Field
from .. import dobj


class ScipyMinimizer(Minimizer):
    """Scipy-based minimizer

    Parameters
    ----------
    controller : IterationController
        Object that decides when to terminate the minimization.
    method     : str
        The selected Scipy minimization method.
    options    : dictionary
        A set of custom options for the selected minimizer.
    """

    def __init__(self, controller, method, options, need_hessp):
        super(ScipyMinimizer, self).__init__()
        if not dobj.is_numpy():
            raise NotImplementedError
        self._controller = controller
        self._method = method
        self._options = options
        self._need_hessp = need_hessp

    def __call__(self, energy):
Martin Reinecke's avatar
fix  
Martin Reinecke committed
48
        class _MinimizationDone(BaseException):
Martin Reinecke's avatar
Martin Reinecke committed
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            pass

        class _MinHelper(object):
            def __init__(self, controller, energy):
                self._controller = controller
                self._energy = energy
                self._domain = energy.position.domain

            def _update(self, x):
                pos = Field(self._domain, x.reshape(self._domain.shape))
                if (pos.val != self._energy.position.val).any():
                    self._energy = self._energy.at(pos)
                    status = self._controller.check(self._energy)
                    if status != self._controller.CONTINUE:
                        raise _MinimizationDone

            def fun(self, x):
                self._update(x)
                return self._energy.value

            def jac(self, x):
                self._update(x)
                return self._energy.gradient.val.reshape(-1)

            def hessp(self, x, p):
                self._update(x)
                vec = Field(self._domain, p.reshape(self._domain.shape))
                res = self._energy.curvature(vec)
                return res.val.reshape(-1)

        import scipy.optimize as opt
        hlp = _MinHelper(self._controller, energy)
        energy = None
        status = self._controller.start(hlp._energy)
        if status != self._controller.CONTINUE:
            return hlp._energy, status
        try:
            if self._need_hessp:
                opt.minimize(hlp.fun, hlp._energy.position.val.reshape(-1),
                             method=self._method, jac=hlp.jac,
                             hessp=hlp.hessp,
                             options=self._options)
            else:
                opt.minimize(hlp.fun, hlp._energy.position.val.reshape(-1),
                             method=self._method, jac=hlp.jac,
                             options=self._options)
        except _MinimizationDone:
            status = self._controller.check(hlp._energy)
            return hlp._energy, self._controller.check(hlp._energy)
        return hlp._energy, self._controller.ERROR


def NewtonCG(controller):
    return ScipyMinimizer(controller, "Newton-CG",
                          {"xtol": 1e-20, "maxiter": None}, True)


def L_BFGS_B(controller, maxcor=10):
    return ScipyMinimizer(controller, "L-BFGS-B",
                          {"ftol": 1e-20, "gtol": 1e-20, "maxcor": maxcor},
                          False)