extra.py 6.82 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17 18

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Martin Reinecke's avatar
fix  
Martin Reinecke committed
20 21
from .field import Field
from .linearization import Linearization
22
from .operators.linear_operator import LinearOperator
Martin Reinecke's avatar
fix  
Martin Reinecke committed
23
from .sugar import from_random
24

Martin Reinecke's avatar
Martin Reinecke committed
25
__all__ = ["consistency_check", "check_jacobian_consistency"]
26

Philipp Arras's avatar
Philipp Arras committed
27

Martin Reinecke's avatar
Martin Reinecke committed
28 29 30 31 32 33 34 35
def _assert_allclose(f1, f2, atol, rtol):
    if isinstance(f1, Field):
        return np.testing.assert_allclose(f1.local_data, f2.local_data,
                                          atol=atol, rtol=rtol)
    for key, val in f1.items():
        _assert_allclose(val, f2[key], atol=atol, rtol=rtol)


36 37
def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear):
Martin Reinecke's avatar
Martin Reinecke committed
38 39 40 41 42 43 44
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
45 46
    if only_r_linear:
        res1, res2 = res1.real, res2.real
Martin Reinecke's avatar
Martin Reinecke committed
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)


63 64 65 66
def _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol,
                            only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
67 68 69
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


70 71 72 73 74 75 76 77 78
def _check_linearity(op, domain_dtype, atol, rtol):
    fld1 = from_random("normal", op.domain, dtype=domain_dtype)
    fld2 = from_random("normal", op.domain, dtype=domain_dtype)
    alpha = np.random.random()
    val1 = op(alpha*fld1+fld2)
    val2 = alpha*op(fld1)+op(fld2)
    _assert_allclose(val1, val2, atol=atol, rtol=rtol)


Martin Reinecke's avatar
Martin Reinecke committed
79
def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
80
                      atol=0, rtol=1e-7, only_r_linear=False):
Reimar H Leike's avatar
Reimar H Leike committed
81 82 83 84
    """
    Checks an operator for algebraic consistency of its capabilities.

    Checks whether times(), adjoint_times(), inverse_times() and
Philipp Arras's avatar
Philipp Arras committed
85
    adjoint_inverse_times() (if in capability list) is implemented
Reimar H Leike's avatar
Reimar H Leike committed
86
    consistently. Additionally, it checks whether the operator is linear.
Philipp Arras's avatar
Philipp Arras committed
87 88 89 90 91

    Parameters
    ----------
    op : LinearOperator
        Operator which shall be checked.
Reimar H Leike's avatar
Reimar H Leike committed
92
    domain_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
93 94
        The data type of the random vectors in the operator's domain. Default
        is `np.float64`.
Reimar H Leike's avatar
Reimar H Leike committed
95
    target_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
96 97 98
        The data type of the random vectors in the operator's target. Default
        is `np.float64`.
    atol : float
Martin Reinecke's avatar
Martin Reinecke committed
99 100
        Absolute tolerance for the check. If rtol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
101
        Default: 0.
Philipp Arras's avatar
Philipp Arras committed
102
    rtol : float
Martin Reinecke's avatar
Martin Reinecke committed
103 104
        Relative tolerance for the check. If atol is specified,
        then satisfying any tolerance will let the check pass.
Reimar H Leike's avatar
Reimar H Leike committed
105
        Default: 0.
106 107 108
    only_r_linear: bool
        set to True if the operator is only R-linear, not C-linear.
        This will relax the adjointness test accordingly.
Philipp Arras's avatar
Philipp Arras committed
109
    """
110 111 112
    if not isinstance(op, LinearOperator):
        raise TypeError('This test tests only linear operators.')
    _check_linearity(op, domain_dtype, atol, rtol)
113 114 115 116 117 118
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol,
                         only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
119
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
120
                         rtol, only_r_linear)
Martin Reinecke's avatar
Martin Reinecke committed
121 122


Martin Reinecke's avatar
Martin Reinecke committed
123
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
124
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
125 126 127 128
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
129
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
130
    else:
Martin Reinecke's avatar
Martin Reinecke committed
131
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
132 133 134 135
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
136
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
137 138 139 140 141 142 143 144 145
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
146

Martin Reinecke's avatar
Martin Reinecke committed
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
def check_jacobian_consistency(op, loc, tol=1e-8, ntries=100):
    """
    Checks the Jacobian of an operator against its finite difference
    approximation.

    Computes the Jacobian with finite differences and compares it to the
    implemented Jacobian.

    Parameters
    ----------
    op : Operator
        Operator which shall be checked.
    loc : Field or MultiField
        An Field or MultiField instance which has the same domain
        as op. The location at which the gradient is checked
    tol : float
        Tolerance for the check.
    """
Martin Reinecke's avatar
Martin Reinecke committed
165
    for _ in range(ntries):
166
        lin = op(Linearization.make_var(loc))
Martin Reinecke's avatar
Martin Reinecke committed
167
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
168
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
169 170 171 172
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
173
            linmid = op(Linearization.make_var(locmid))
Martin Reinecke's avatar
Martin Reinecke committed
174 175
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
176
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
177
            if (abs(numgrad-dirder) <= xtol).all():
Martin Reinecke's avatar
Martin Reinecke committed
178 179 180
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
181
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
182 183 184
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext