extra.py 7.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17
18

import numpy as np
Philipp Arras's avatar
Philipp Arras committed
19

Martin Reinecke's avatar
fix    
Martin Reinecke committed
20
21
from .field import Field
from .linearization import Linearization
22
from .operators.linear_operator import LinearOperator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
23
from .sugar import from_random
24

Martin Reinecke's avatar
Martin Reinecke committed
25
__all__ = ["consistency_check", "check_value_gradient_consistency",
Martin Reinecke's avatar
Martin Reinecke committed
26
           "check_value_gradient_metric_consistency"]
27

Philipp Arras's avatar
Philipp Arras committed
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def _assert_allclose(f1, f2, atol, rtol):
    if isinstance(f1, Field):
        return np.testing.assert_allclose(f1.local_data, f2.local_data,
                                          atol=atol, rtol=rtol)
    for key, val in f1.items():
        _assert_allclose(val, f2[key], atol=atol, rtol=rtol)


def _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.ADJOINT_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    f1 = from_random("normal", op.domain, dtype=domain_dtype)
    f2 = from_random("normal", op.target, dtype=target_dtype)
    res1 = f1.vdot(op.adjoint_times(f2))
    res2 = op.times(f1).vdot(f2)
    np.testing.assert_allclose(res1, res2, atol=atol, rtol=rtol)


def _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol):
    needed_cap = op.TIMES | op.INVERSE_TIMES
    if (op.capability & needed_cap) != needed_cap:
        return
    foo = from_random("normal", op.target, dtype=target_dtype)
    res = op(op.inverse_times(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)

    foo = from_random("normal", op.domain, dtype=domain_dtype)
    res = op.inverse_times(op(foo))
    _assert_allclose(res, foo, atol=atol, rtol=rtol)


def _full_implementation(op, domain_dtype, target_dtype, atol, rtol):
    _adjoint_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _inverse_implementation(op, domain_dtype, target_dtype, atol, rtol)


66
67
68
69
70
71
72
73
74
def _check_linearity(op, domain_dtype, atol, rtol):
    fld1 = from_random("normal", op.domain, dtype=domain_dtype)
    fld2 = from_random("normal", op.domain, dtype=domain_dtype)
    alpha = np.random.random()
    val1 = op(alpha*fld1+fld2)
    val2 = alpha*op(fld1)+op(fld2)
    _assert_allclose(val1, val2, atol=atol, rtol=rtol)


Martin Reinecke's avatar
Martin Reinecke committed
75
76
def consistency_check(op, domain_dtype=np.float64, target_dtype=np.float64,
                      atol=0, rtol=1e-7):
Reimar H Leike's avatar
Reimar H Leike committed
77
78
79
80
    """
    Checks an operator for algebraic consistency of its capabilities.

    Checks whether times(), adjoint_times(), inverse_times() and
Philipp Arras's avatar
Philipp Arras committed
81
    adjoint_inverse_times() (if in capability list) is implemented
Reimar H Leike's avatar
Reimar H Leike committed
82
    consistently. Additionally, it checks whether the operator is linear.
Philipp Arras's avatar
Philipp Arras committed
83
84
85
86
87

    Parameters
    ----------
    op : LinearOperator
        Operator which shall be checked.
Reimar H Leike's avatar
Reimar H Leike committed
88
    domain_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
89
90
        The data type of the random vectors in the operator's domain. Default
        is `np.float64`.
Reimar H Leike's avatar
Reimar H Leike committed
91
    target_dtype : dtype
Philipp Arras's avatar
Philipp Arras committed
92
93
94
        The data type of the random vectors in the operator's target. Default
        is `np.float64`.
    atol : float
Reimar H Leike's avatar
Reimar H Leike committed
95
96
97
        Absolute tolerance for the check. If rtol is specified, 
        then satisfying any tolerance will let the check pass. 
        Default: 0.
Philipp Arras's avatar
Philipp Arras committed
98
    rtol : float
Reimar H Leike's avatar
Reimar H Leike committed
99
100
101
        Relative tolerance for the check. If atol is specified, 
        then satisfying any tolerance will let the check pass. 
        Default: 0.
Philipp Arras's avatar
Philipp Arras committed
102
    """
103
104
105
    if not isinstance(op, LinearOperator):
        raise TypeError('This test tests only linear operators.')
    _check_linearity(op, domain_dtype, atol, rtol)
Martin Reinecke's avatar
Martin Reinecke committed
106
107
108
109
110
111
112
    _full_implementation(op, domain_dtype, target_dtype, atol, rtol)
    _full_implementation(op.adjoint, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.inverse, target_dtype, domain_dtype, atol, rtol)
    _full_implementation(op.adjoint.inverse, domain_dtype, target_dtype, atol,
                         rtol)


Martin Reinecke's avatar
Martin Reinecke committed
113
def _get_acceptable_location(op, loc, lin):
Martin Reinecke's avatar
Martin Reinecke committed
114
    if not np.isfinite(lin.val.sum()):
Martin Reinecke's avatar
Martin Reinecke committed
115
116
117
118
        raise ValueError('Initial value must be finite')
    dir = from_random("normal", loc.domain)
    dirder = lin.jac(dir)
    if dirder.norm() == 0:
Martin Reinecke's avatar
Martin Reinecke committed
119
        dir = dir * (lin.val.norm()*1e-5)
Martin Reinecke's avatar
Martin Reinecke committed
120
    else:
Martin Reinecke's avatar
Martin Reinecke committed
121
        dir = dir * (lin.val.norm()*1e-5/dirder.norm())
Martin Reinecke's avatar
Martin Reinecke committed
122
123
124
125
    # Find a step length that leads to a "reasonable" location
    for i in range(50):
        try:
            loc2 = loc+dir
126
            lin2 = op(Linearization.make_var(loc2, lin.want_metric))
Martin Reinecke's avatar
Martin Reinecke committed
127
128
129
130
131
132
133
134
135
            if np.isfinite(lin2.val.sum()) and abs(lin2.val.sum()) < 1e20:
                break
        except FloatingPointError:
            pass
        dir = dir*0.5
    else:
        raise ValueError("could not find a reasonable initial step")
    return loc2, lin2

Martin Reinecke's avatar
Martin Reinecke committed
136

Martin Reinecke's avatar
Martin Reinecke committed
137
def _check_consistency(op, loc, tol, ntries, do_metric):
Martin Reinecke's avatar
Martin Reinecke committed
138
    for _ in range(ntries):
139
        lin = op(Linearization.make_var(loc, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
140
        loc2, lin2 = _get_acceptable_location(op, loc, lin)
Martin Reinecke's avatar
Martin Reinecke committed
141
        dir = loc2-loc
Martin Reinecke's avatar
Martin Reinecke committed
142
143
144
145
        locnext = loc2
        dirnorm = dir.norm()
        for i in range(50):
            locmid = loc + 0.5*dir
146
            linmid = op(Linearization.make_var(locmid, do_metric))
Martin Reinecke's avatar
Martin Reinecke committed
147
148
            dirder = linmid.jac(dir)
            numgrad = (lin2.val-lin.val)
Martin Reinecke's avatar
Martin Reinecke committed
149
            xtol = tol * dirder.norm() / np.sqrt(dirder.size)
Martin Reinecke's avatar
Martin Reinecke committed
150
151
            cond = (abs(numgrad-dirder) <= xtol).all()
            if do_metric:
Martin Reinecke's avatar
Martin Reinecke committed
152
153
                dgrad = linmid.metric(dir)
                dgrad2 = (lin2.gradient-lin.gradient)
Martin Reinecke's avatar
Martin Reinecke committed
154
155
                cond = cond and (abs(dgrad-dgrad2) <= xtol).all()
            if cond:
Martin Reinecke's avatar
Martin Reinecke committed
156
157
158
                break
            dir = dir*0.5
            dirnorm *= 0.5
Martin Reinecke's avatar
Martin Reinecke committed
159
            loc2, lin2 = locmid, linmid
Martin Reinecke's avatar
Martin Reinecke committed
160
161
162
        else:
            raise ValueError("gradient and value seem inconsistent")
        loc = locnext
Martin Reinecke's avatar
Martin Reinecke committed
163
164


Martin Reinecke's avatar
Martin Reinecke committed
165
def check_value_gradient_consistency(op, loc, tol=1e-8, ntries=100):
Reimar H Leike's avatar
Reimar H Leike committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    """
    Checks the gradient (jacobian) of an operator against its value. 

    Computes the gradient (jacobian) with finite differences and compares
    it to the implemented gradient (jacobian).

    Parameters
    ----------
    op : Operator
        Operator which shall be checked.
    loc : Field or MultiField
        An Field or MultiField instance which has the same domain
        as op. The location at which the gradient is checked
    atol : float
        Absolute tolerance for the check. If rtol is specified, 
        then satisfying any tolerance will let the check pass. 
        Default: 0.
    rtol : float
        Relative tolerance for the check. If atol is specified, 
        then satisfying any tolerance will let the check pass. 
        Default: 0
    """
Martin Reinecke's avatar
Martin Reinecke committed
188
189
190
    _check_consistency(op, loc, tol, ntries, False)


Martin Reinecke's avatar
Martin Reinecke committed
191
def check_value_gradient_metric_consistency(op, loc, tol=1e-8, ntries=100):
Philipp Arras's avatar
Philipp Arras committed
192
    """FIXME"""
Martin Reinecke's avatar
Martin Reinecke committed
193
    _check_consistency(op, loc, tol, ntries, True)