field.py 30.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

csongor's avatar
csongor committed
19
20
21
from __future__ import division
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
22
23
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
24

25
from d2o import distributed_data_object,\
26
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
27

28
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
29

30
from nifty.domain_object import DomainObject
31

32
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
33

csongor's avatar
csongor committed
34
import nifty.nifty_utilities as utilities
35
36
from nifty.random import Random

csongor's avatar
csongor committed
37

Jait Dixit's avatar
Jait Dixit committed
38
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
39
    # ---Initialization methods---
40

41
    def __init__(self, domain=None, val=None, dtype=None,
42
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
43

44
        self.domain = self._parse_domain(domain=domain, val=val)
45
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
46

Theo Steininger's avatar
Theo Steininger committed
47
        self.dtype = self._infer_dtype(dtype=dtype,
Jait Dixit's avatar
Jait Dixit committed
48
                                       val=val,
49
                                       domain=self.domain)
50

51
52
53
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
54

55
56
57
58
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
59

60
    def _parse_domain(self, domain, val=None):
61
        if domain is None:
62
63
64
65
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
66
        elif isinstance(domain, DomainObject):
67
            domain = (domain,)
68
69
70
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
71
        for d in domain:
72
            if not isinstance(d, DomainObject):
73
74
                raise TypeError(
                    "Given domain contains something that is not a "
75
                    "DomainObject instance.")
csongor's avatar
csongor committed
76
77
        return domain

Theo Steininger's avatar
Theo Steininger committed
78
79
80
81
82
83
84
85
86
87
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
88

89
    def _infer_dtype(self, dtype, val, domain):
csongor's avatar
csongor committed
90
        if dtype is None:
91
92
93
            if isinstance(val, Field) or \
               isinstance(val, distributed_data_object):
                dtype = val.dtype
Theo Steininger's avatar
Theo Steininger committed
94
95
96
97
98
            dtype_tuple = (np.dtype(gc['default_field_dtype']),)
        else:
            dtype_tuple = (np.dtype(dtype),)
        if domain is not None:
            dtype_tuple += tuple(np.dtype(sp.dtype) for sp in domain)
csongor's avatar
csongor committed
99

Theo Steininger's avatar
Theo Steininger committed
100
        dtype = reduce(lambda x, y: np.result_type(x, y), dtype_tuple)
101

Theo Steininger's avatar
Theo Steininger committed
102
        return dtype
103

104
105
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
106
            if isinstance(val, distributed_data_object):
107
                distribution_strategy = val.distribution_strategy
108
            elif isinstance(val, Field):
109
                distribution_strategy = val.distribution_strategy
110
            else:
111
                self.logger.debug("distribution_strategy set to default!")
112
                distribution_strategy = gc['default_distribution_strategy']
113
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
114
115
116
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
117
        return distribution_strategy
118
119

    # ---Factory methods---
120

121
    @classmethod
122
    def from_random(cls, random_type, domain=None, dtype=None,
123
                    distribution_strategy=None, **kwargs):
124
        # create a initially empty field
125
        f = cls(domain=domain, dtype=dtype,
126
                distribution_strategy=distribution_strategy)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

        # extract the distributed_dato_object from f and apply the appropriate
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):

        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
162
        else:
163
164
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
165

166
        return random_arguments
csongor's avatar
csongor committed
167

168
169
170
171
    # ---Powerspectral methods---

    def power_analyze(self, spaces=None, log=False, nbin=None, binbounds=None,
                      real_signal=True):
Theo Steininger's avatar
Theo Steininger committed
172
        # check if all spaces in `self.domain` are either harmonic or
173
174
175
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
176
                self.logger.info(
177
                    "Field has a space in `domain` which is neither "
178
179
180
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
181
182
183
184
185
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
186
187
188
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
189
190

        if len(spaces) == 0:
191
192
            raise ValueError(
                "No space for analysis specified.")
193
        elif len(spaces) > 1:
194
195
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
196
197
198
199

        space_index = spaces[0]

        if not self.domain[space_index].harmonic:
200
201
            raise ValueError(
                "The analyzed space must be harmonic.")
202

203
204
205
206
207
208
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

209
210
211
212
        distribution_strategy = \
            self.val.get_axes_local_distribution_strategy(
                self.domain_axes[space_index])

213
214
215
216
217
        if real_signal:
            power_dtype = np.dtype('complex')
        else:
            power_dtype = np.dtype('float')

218
219
        harmonic_domain = self.domain[space_index]
        power_domain = PowerSpace(harmonic_domain=harmonic_domain,
220
                                  distribution_strategy=distribution_strategy,
221
222
                                  log=log, nbin=nbin, binbounds=binbounds,
                                  dtype=power_dtype)
223

224
        # extract pindex and rho from power_domain
225
226
        pindex = power_domain.pindex
        rho = power_domain.rho
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        if real_signal:
            hermitian_part, anti_hermitian_part = \
                harmonic_domain.hermitian_decomposition(
                                            self.val,
                                            axes=self.domain_axes[space_index])

            [hermitian_power, anti_hermitian_power] = \
                [self._calculate_power_spectrum(
                                            x=part,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])
                 for part in [hermitian_part, anti_hermitian_part]]

            power_spectrum = hermitian_power + 1j * anti_hermitian_power
        else:
            power_spectrum = self._calculate_power_spectrum(
245
246
247
248
249
250
251
252
253
                                            x=self.val,
                                            pindex=pindex,
                                            rho=rho,
                                            axes=self.domain_axes[space_index])

        # create the result field and put power_spectrum into it
        result_domain = list(self.domain)
        result_domain[space_index] = power_domain

254
255
256
        result_field = self.copy_empty(
                   domain=result_domain,
                   distribution_strategy=power_spectrum.distribution_strategy)
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

    def _calculate_power_spectrum(self, x, pindex, rho, axes=None):
        fieldabs = abs(x)
        fieldabs **= 2

        if axes is not None:
            pindex = self._shape_up_pindex(
                                    pindex=pindex,
                                    target_shape=x.shape,
                                    target_strategy=x.distribution_strategy,
                                    axes=axes)
        power_spectrum = pindex.bincount(weights=fieldabs,
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        power_spectrum **= 0.5
        return power_spectrum

    def _shape_up_pindex(self, pindex, target_shape, target_strategy, axes):
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
285
            raise ValueError("pindex's distribution strategy must be "
286
287
288
289
290
291
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
292
                    "A slicing distributor shall not be reshaped to "
293
294
295
296
297
298
299
300
301
302
303
304
305
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

306
307
    def power_synthesize(self, spaces=None, real_signal=True,
                         mean=None, std=None):
308

Theo Steininger's avatar
Theo Steininger committed
309
        # check if all spaces in `self.domain` are either of signal-type or
310
311
        # power_space instances
        for sp in self.domain:
312
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
313
                self.logger.info(
314
                    "Field has a space in `domain` which is neither "
315
316
                    "harmonic nor a PowerSpace.")

317
318
319
320
321
322
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
            if len(self.domain) == 1:
                spaces = (0,)
            else:
323
324
325
                raise ValueError(
                    "Field has multiple spaces as domain "
                    "but `spaces` is None.")
326
327

        if len(spaces) == 0:
328
329
            raise ValueError(
                "No space for synthesis specified.")
330
        elif len(spaces) > 1:
331
332
            raise ValueError(
                "Conversion of only one space at a time is allowed.")
333
334
335
336

        power_space_index = spaces[0]
        power_domain = self.domain[power_space_index]
        if not isinstance(power_domain, PowerSpace):
337
338
            raise ValueError(
                "A PowerSpace is needed for field synthetization.")
339
340
341
342
343
344
345
346
347
348
349
350
351
352

        # create the result domain
        result_domain = list(self.domain)
        harmonic_domain = power_domain.harmonic_domain
        result_domain[power_space_index] = harmonic_domain

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_list = [None, None]
        else:
            result_list = [None]

353
354
        result_list = [self.__class__.from_random(
                             'normal',
355
356
357
                             mean=mean,
                             std=std,
                             domain=result_domain,
358
359
                             dtype=harmonic_domain.dtype,
                             distribution_strategy=self.distribution_strategy)
360
361
362
363
364
365
366
367
368
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
        if real_signal:
            result_val_list = [harmonic_domain.hermitian_decomposition(
                                    x.val,
369
370
                                    axes=x.domain_axes[power_space_index],
                                    preserve_gaussian_variance=True)[0]
371
372
373
374
375
376
377
378
379
380
381
382
383
384
                               for x in result_list]
        else:
            result_val_list = [x.val for x in result_list]

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
        pindex = power_domain.pindex
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
385
            self.logger.warn(
386
                "The distribution_stragey of pindex does not fit the "
387
388
389
390
391
392
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)
393
        full_spec = self.val.get_full_data()
394
395
396
397
398

        local_blow_up = [slice(None)]*len(self.shape)
        local_blow_up[self.domain_axes[power_space_index][0]] = local_pindex

        # here, the power_spectrum is distributed into the new shape
399
        local_rescaler = full_spec[local_blow_up]
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if issubclass(power_domain.dtype.type, np.complexfloating):
            result = result_list[0] + 1j*result_list[1]
        else:
            result = result_list[0]

        return result
421

Theo Steininger's avatar
Theo Steininger committed
422
    # ---Properties---
423

Theo Steininger's avatar
Theo Steininger committed
424
    def set_val(self, new_val=None, copy=False):
425
426
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
427
428
            new_val = new_val.copy()
        self._val = new_val
429
        return self
csongor's avatar
csongor committed
430

431
    def get_val(self, copy=False):
432
433
434
        if self._val is None:
            self.set_val(None)

435
        if copy:
Theo Steininger's avatar
Theo Steininger committed
436
            return self._val.copy()
437
        else:
Theo Steininger's avatar
Theo Steininger committed
438
            return self._val
csongor's avatar
csongor committed
439

Theo Steininger's avatar
Theo Steininger committed
440
441
    @property
    def val(self):
442
        return self.get_val(copy=False)
csongor's avatar
csongor committed
443

Theo Steininger's avatar
Theo Steininger committed
444
445
    @val.setter
    def val(self, new_val):
446
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
447

448
449
    @property
    def shape(self):
450
        shape_tuple = tuple(sp.shape for sp in self.domain)
451
452
453
454
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
455

456
        return global_shape
csongor's avatar
csongor committed
457

458
459
    @property
    def dim(self):
460
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
461
462
463
464
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
465

466
467
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
468
469
470
471
472
473
474
475
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
476
        try:
Theo Steininger's avatar
Theo Steininger committed
477
            return reduce(lambda x, y: x * y, volume_tuple)
478
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
479
            return 0.
480

Theo Steininger's avatar
Theo Steininger committed
481
    # ---Special unary/binary operations---
482

csongor's avatar
csongor committed
483
484
485
    def cast(self, x=None, dtype=None):
        if dtype is None:
            dtype = self.dtype
486
487
        else:
            dtype = np.dtype(dtype)
488

489
490
        casted_x = x

491
        for ind, sp in enumerate(self.domain):
492
            casted_x = sp.pre_cast(casted_x,
493
494
495
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
496
497

        for ind, sp in enumerate(self.domain):
498
499
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
500

501
        return casted_x
csongor's avatar
csongor committed
502

Theo Steininger's avatar
Theo Steininger committed
503
    def _actual_cast(self, x, dtype=None):
504
        if isinstance(x, Field):
csongor's avatar
csongor committed
505
506
507
508
509
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

510
        return_x = distributed_data_object(
511
512
513
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
514
515
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
516

517
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
518
        copied_val = self.get_val(copy=True)
519
520
521
522
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
523
524
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
525

526
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
Theo Steininger's avatar
Theo Steininger committed
527
528
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
529
        else:
Theo Steininger's avatar
Theo Steininger committed
530
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
531

Theo Steininger's avatar
Theo Steininger committed
532
533
534
535
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
536

537
538
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
539

Theo Steininger's avatar
Theo Steininger committed
540
541
542
543
544
545
546
547
548
549
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
550
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
551
552
553
554
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
555
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
556
        return new_field
csongor's avatar
csongor committed
557

Theo Steininger's avatar
Theo Steininger committed
558
559
560
561
562
563
564
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
565
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
566
567
568
569
570
571
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
572
        if inplace:
csongor's avatar
csongor committed
573
574
575
576
            new_field = self
        else:
            new_field = self.copy_empty()

577
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
578

579
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
580
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
581
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
582

583
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
584
585
586
587
588
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
589
590

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
591
592
        return new_field

593
594
595
596
597
    def dot(self, x=None, spaces=None, bare=False):

        if not isinstance(x, Field):
            raise ValueError("The dot-partner must be an instance of " +
                             "the NIFTy field class")
Theo Steininger's avatar
Theo Steininger committed
598
599
600
601
602
603
604

        # Compute the dot respecting the fact of discrete/continous spaces
        if bare:
            y = self
        else:
            y = self.weight(power=1)

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        if spaces is None:
            x_val = x.get_val(copy=False)
            y_val = y.get_val(copy=False)
            result = (x_val.conjugate() * y_val).sum()
            return result
        else:
            # create a diagonal operator which is capable of taking care of the
            # axes-matching
            from nifty.operators.diagonal_operator import DiagonalOperator
            diagonal = y.val.conjugate()
            diagonalOperator = DiagonalOperator(domain=y.domain,
                                                diagonal=diagonal,
                                                copy=False)
            dotted = diagonalOperator(x, spaces=spaces)
            return dotted.sum(spaces=spaces)
Theo Steininger's avatar
Theo Steininger committed
620

621
    def norm(self, q=2):
csongor's avatar
csongor committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
        """
            Computes the Lq-norm of the field values.

            Parameters
            ----------
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
636
        if q == 2:
637
            return (self.dot(x=self)) ** (1 / 2)
csongor's avatar
csongor committed
638
        else:
639
            return self.dot(x=self ** (q - 1)) ** (1 / q)
csongor's avatar
csongor committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

    def conjugate(self, inplace=False):
        """
            Computes the complex conjugate of the field.

            Returns
            -------
            cc : field
                The complex conjugated field.

        """
        if inplace:
            work_field = self
        else:
            work_field = self.copy_empty()

656
        new_val = self.get_val(copy=False)
Theo Steininger's avatar
Theo Steininger committed
657
        new_val = new_val.conjugate()
658
        work_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
659
660
661

        return work_field

Theo Steininger's avatar
Theo Steininger committed
662
    # ---General unary/contraction methods---
663

Theo Steininger's avatar
Theo Steininger committed
664
665
    def __pos__(self):
        return self.copy()
666

Theo Steininger's avatar
Theo Steininger committed
667
668
669
670
    def __neg__(self):
        return_field = self.copy_empty()
        new_val = -self.get_val(copy=False)
        return_field.set_val(new_val, copy=False)
csongor's avatar
csongor committed
671
672
        return return_field

Theo Steininger's avatar
Theo Steininger committed
673
674
675
676
677
    def __abs__(self):
        return_field = self.copy_empty()
        new_val = abs(self.get_val(copy=False))
        return_field.set_val(new_val, copy=False)
        return return_field
csongor's avatar
csongor committed
678

679
    def _contraction_helper(self, op, spaces):
Theo Steininger's avatar
Theo Steininger committed
680
681
682
683
684
        # build a list of all axes
        if spaces is None:
            spaces = xrange(len(self.domain))
        else:
            spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
685

686
        axes_list = tuple(self.domain_axes[sp_index] for sp_index in spaces)
687
688

        try:
Theo Steininger's avatar
Theo Steininger committed
689
            axes_list = reduce(lambda x, y: x+y, axes_list)
690
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
691
            axes_list = ()
csongor's avatar
csongor committed
692

Theo Steininger's avatar
Theo Steininger committed
693
694
695
        # perform the contraction on the d2o
        data = self.get_val(copy=False)
        data = getattr(data, op)(axis=axes_list)
csongor's avatar
csongor committed
696

Theo Steininger's avatar
Theo Steininger committed
697
698
699
        # check if the result is scalar or if a result_field must be constr.
        if np.isscalar(data):
            return data
csongor's avatar
csongor committed
700
        else:
Theo Steininger's avatar
Theo Steininger committed
701
702
703
            return_domain = tuple(self.domain[i]
                                  for i in xrange(len(self.domain))
                                  if i not in spaces)
704

Theo Steininger's avatar
Theo Steininger committed
705
706
707
708
            return_field = Field(domain=return_domain,
                                 val=data,
                                 copy=False)
            return return_field
csongor's avatar
csongor committed
709

710
711
    def sum(self, spaces=None):
        return self._contraction_helper('sum', spaces)
csongor's avatar
csongor committed
712

713
714
    def prod(self, spaces=None):
        return self._contraction_helper('prod', spaces)
csongor's avatar
csongor committed
715

716
717
    def all(self, spaces=None):
        return self._contraction_helper('all', spaces)
csongor's avatar
csongor committed
718

719
720
    def any(self, spaces=None):
        return self._contraction_helper('any', spaces)
csongor's avatar
csongor committed
721

722
723
    def min(self, spaces=None):
        return self._contraction_helper('min', spaces)
csongor's avatar
csongor committed
724

725
726
    def nanmin(self, spaces=None):
        return self._contraction_helper('nanmin', spaces)
csongor's avatar
csongor committed
727

728
729
    def max(self, spaces=None):
        return self._contraction_helper('max', spaces)
csongor's avatar
csongor committed
730

731
732
    def nanmax(self, spaces=None):
        return self._contraction_helper('nanmax', spaces)
csongor's avatar
csongor committed
733

734
735
    def mean(self, spaces=None):
        return self._contraction_helper('mean', spaces)
csongor's avatar
csongor committed
736

737
738
    def var(self, spaces=None):
        return self._contraction_helper('var', spaces)
csongor's avatar
csongor committed
739

740
741
    def std(self, spaces=None):
        return self._contraction_helper('std', spaces)
csongor's avatar
csongor committed
742

Theo Steininger's avatar
Theo Steininger committed
743
    # ---General binary methods---
csongor's avatar
csongor committed
744

Theo Steininger's avatar
Theo Steininger committed
745
    def _binary_helper(self, other, op, inplace=False):
csongor's avatar
csongor committed
746
        # if other is a field, make sure that the domains match
747
        if isinstance(other, Field):
Theo Steininger's avatar
Theo Steininger committed
748
749
750
751
752
            try:
                assert len(other.domain) == len(self.domain)
                for index in xrange(len(self.domain)):
                    assert other.domain[index] == self.domain[index]
            except AssertionError:
753
754
                raise ValueError(
                    "domains are incompatible.")
Theo Steininger's avatar
Theo Steininger committed
755
            other = other.get_val(copy=False)
csongor's avatar
csongor committed
756

Theo Steininger's avatar
Theo Steininger committed
757
758
        self_val = self.get_val(copy=False)
        return_val = getattr(self_val, op)(other)
csongor's avatar
csongor committed
759
760
761
762

        if inplace:
            working_field = self
        else:
763
            working_field = self.copy_empty(dtype=return_val.dtype)
csongor's avatar
csongor committed
764

Theo Steininger's avatar
Theo Steininger committed
765
        working_field.set_val(return_val, copy=False)
csongor's avatar
csongor committed
766
767
768
        return working_field

    def __add__(self, other):
Theo Steininger's avatar
Theo Steininger committed
769
        return self._binary_helper(other, op='__add__')
770

771
    def __radd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
772
        return self._binary_helper(other, op='__radd__')
csongor's avatar
csongor committed
773
774

    def __iadd__(self, other):
Theo Steininger's avatar
Theo Steininger committed
775
        return self._binary_helper(other, op='__iadd__', inplace=True)
csongor's avatar
csongor committed
776
777

    def __sub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
778
        return self._binary_helper(other, op='__sub__')
csongor's avatar
csongor committed
779
780

    def __rsub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
781
        return self._binary_helper(other, op='__rsub__')
csongor's avatar
csongor committed
782
783

    def __isub__(self, other):
Theo Steininger's avatar
Theo Steininger committed
784
        return self._binary_helper(other, op='__isub__', inplace=True)
csongor's avatar
csongor committed
785
786

    def __mul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
787
        return self._binary_helper(other, op='__mul__')
788

789
    def __rmul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
790
        return self._binary_helper(other, op='__rmul__')
csongor's avatar
csongor committed
791
792

    def __imul__(self, other):
Theo Steininger's avatar
Theo Steininger committed
793
        return self._binary_helper(other, op='__imul__', inplace=True)
csongor's avatar
csongor committed
794
795

    def __div__(self, other):
Theo Steininger's avatar
Theo Steininger committed
796
        return self._binary_helper(other, op='__div__')
csongor's avatar
csongor committed
797
798

    def __rdiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
799
        return self._binary_helper(other, op='__rdiv__')
csongor's avatar
csongor committed
800
801

    def __idiv__(self, other):
Theo Steininger's avatar
Theo Steininger committed
802
        return self._binary_helper(other, op='__idiv__', inplace=True)
803

csongor's avatar
csongor committed
804
    def __pow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
805
        return self._binary_helper(other, op='__pow__')
csongor's avatar
csongor committed
806
807

    def __rpow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
808
        return self._binary_helper(other, op='__rpow__')
csongor's avatar
csongor committed
809
810

    def __ipow__(self, other):
Theo Steininger's avatar
Theo Steininger committed
811
        return self._binary_helper(other, op='__ipow__', inplace=True)
csongor's avatar
csongor committed
812
813

    def __lt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
814
        return self._binary_helper(other, op='__lt__')
csongor's avatar
csongor committed
815
816

    def __le__(self, other):
Theo Steininger's avatar
Theo Steininger committed
817
        return self._binary_helper(other, op='__le__')
csongor's avatar
csongor committed
818
819
820
821
822

    def __ne__(self, other):
        if other is None:
            return True
        else:
Theo Steininger's avatar
Theo Steininger committed
823
            return self._binary_helper(other, op='__ne__')
csongor's avatar
csongor committed
824
825
826
827
828

    def __eq__(self, other):
        if other is None:
            return False
        else:
Theo Steininger's avatar
Theo Steininger committed
829
            return self._binary_helper(other, op='__eq__')
csongor's avatar
csongor committed
830
831

    def __ge__(self, other):
Theo Steininger's avatar
Theo Steininger committed
832
        return self._binary_helper(other, op='__ge__')
csongor's avatar
csongor committed
833
834

    def __gt__(self, other):
Theo Steininger's avatar
Theo Steininger committed
835
836
837
838
839
840
841
842
843
844
845
846
847
        return self._binary_helper(other, op='__gt__')

    def __repr__(self):
        return "<nifty_core.field>"

    def __str__(self):
        minmax = [self.min(), self.max()]
        mean = self.mean()
        return "nifty_core.field instance\n- domain      = " + \
               repr(self.domain) + \
               "\n- val         = " + repr(self.get_val()) + \
               "\n  - min.,max. = " + str(minmax) + \
               "\n  - mean = " + str(mean)
csongor's avatar
csongor committed
848

Jait Dixit's avatar
Jait Dixit committed
849
850
851
    # ---Serialization---

    def _to_hdf5(self, hdf5_group):
Theo Steininger's avatar
Theo Steininger committed
852
853
854
        hdf5_group.attrs['dtype'] = self.dtype.name
        hdf5_group.attrs['distribution_strategy'] = self.distribution_strategy
        hdf5_group.attrs['domain_axes'] = str(self.domain_axes)
855
        hdf5_group['num_domain'] = len(self.domain)
Jait Dixit's avatar
Jait Dixit committed
856

Theo Steininger's avatar
Theo Steininger committed
857
858
859
860
        if self._val is None:
            ret_dict = {}
        else:
            ret_dict = {'val': self.val}
Jait Dixit's avatar
Jait Dixit committed
861
862
863
864
865
866
867

        for i in range(len(self.domain)):
            ret_dict['s_' + str(i)] = self.domain[i]

        return ret_dict

    @classmethod
Theo Steininger's avatar
Theo Steininger committed
868
    def _from_hdf5(cls, hdf5_group, repository):
Jait Dixit's avatar
Jait Dixit committed
869
870
871
872
873
874
        # create empty field
        new_field = EmptyField()
        # reset class
        new_field.__class__ = cls
        # set values
        temp_domain = []
875
        for i in range(hdf5_group['num_domain'][()]):
Theo Steininger's avatar
Theo Steininger committed
876
            temp_domain.append(repository.get('s_' + str(i), hdf5_group))
Jait Dixit's avatar
Jait Dixit committed
877
878
        new_field.domain = tuple(temp_domain)

Theo Steininger's avatar
Theo Steininger committed
879
        exec('new_field.domain_axes = ' + hdf5_group.attrs['domain_axes'])
Theo Steininger's avatar
Theo Steininger committed
880
881
882
883
884
885

        try:
            new_field._val = repository.get('val', hdf5_group)
        except(KeyError):
            new_field._val = None

Theo Steininger's avatar
Theo Steininger committed
886
887
888
        new_field.dtype = np.dtype(hdf5_group.attrs['dtype'])
        new_field.distribution_strategy =\
            hdf5_group.attrs['distribution_strategy']
Jait Dixit's avatar
Jait Dixit committed
889
890

        return new_field
891

Theo Steininger's avatar
Theo Steininger committed
892

893
class EmptyField(Field):
csongor's avatar
csongor committed
894
895
    def __init__(self):
        pass