distributed_do.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

19
from __future__ import absolute_import, division, print_function
Philipp Arras's avatar
Philipp Arras committed
20 21 22

import sys

23 24
import numpy as np
from mpi4py import MPI
Philipp Arras's avatar
Philipp Arras committed
25 26 27

from ..compat import *
from .random import Random
28

Martin Reinecke's avatar
Martin Reinecke committed
29 30 31 32 33 34
__all__ = ["ntask", "rank", "master", "local_shape", "data_object", "full",
           "empty", "zeros", "ones", "empty_like", "vdot", "exp",
           "log", "tanh", "sqrt", "from_object", "from_random",
           "local_data", "ibegin", "ibegin_from_shape", "np_allreduce_sum",
           "np_allreduce_min", "np_allreduce_max",
           "distaxis", "from_local_data", "from_global_data", "to_global_data",
Martin Reinecke's avatar
Martin Reinecke committed
35
           "redistribute", "default_distaxis", "is_numpy", "absmax", "norm",
Martin Reinecke's avatar
Martin Reinecke committed
36
           "lock", "locked", "uniform_full", "transpose", "to_global_data_rw",
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
37
           "ensure_not_distributed", "ensure_default_distributed",
38
           "clipped_exp", "tanh", "conjugate", "sin", "cos", "tan",
Martin Reinecke's avatar
Martin Reinecke committed
39
           "sinh", "cosh", "sinc", "absolute", "sign", "clip"]
Martin Reinecke's avatar
Martin Reinecke committed
40

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
41 42 43
_comm = MPI.COMM_WORLD
ntask = _comm.Get_size()
rank = _comm.Get_rank()
Martin Reinecke's avatar
Martin Reinecke committed
44
master = (rank == 0)
45 46


Martin Reinecke's avatar
Martin Reinecke committed
47 48 49 50
def is_numpy():
    return False


Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
51
def _shareSize(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
52
    return (nwork//nshares) + int(myshare < nwork % nshares)
Martin Reinecke's avatar
Martin Reinecke committed
53

Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
54 55

def _shareRange(nwork, nshares, myshare):
Martin Reinecke's avatar
Martin Reinecke committed
56 57
    nbase = nwork//nshares
    additional = nwork % nshares
Martin Reinecke's avatar
Martin Reinecke committed
58
    lo = myshare*nbase + min(myshare, additional)
Martin Reinecke's avatar
Martin Reinecke committed
59
    hi = lo + nbase + int(myshare < additional)
Martin Reinecke's avatar
Martin Reinecke committed
60 61
    return lo, hi

62

63
def local_shape(shape, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
64
    if len(shape) == 0 or distaxis == -1:
65
        return shape
Martin Reinecke's avatar
Martin Reinecke committed
66 67
    shape2 = list(shape)
    shape2[distaxis] = _shareSize(shape[distaxis], ntask, rank)
68 69
    return tuple(shape2)

Martin Reinecke's avatar
Martin Reinecke committed
70

71 72
class data_object(object):
    def __init__(self, shape, data, distaxis):
Martin Reinecke's avatar
Martin Reinecke committed
73
        self._shape = tuple(shape)
Martin Reinecke's avatar
Martin Reinecke committed
74
        if len(self._shape) == 0:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
75
            distaxis = -1
Martin Reinecke's avatar
Martin Reinecke committed
76 77
            if not isinstance(data, np.ndarray):
                data = np.full((), data)
78 79
        self._distaxis = distaxis
        self._data = data
Martin Reinecke's avatar
Martin Reinecke committed
80 81
        if local_shape(self._shape, self._distaxis) != self._data.shape:
            raise ValueError("shape mismatch")
82

83 84 85
    def copy(self):
        return data_object(self._shape, self._data.copy(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#     def _sanity_checks(self):
#         # check whether the distaxis is consistent
#         if self._distaxis < -1 or self._distaxis >= len(self._shape):
#             raise ValueError
#         itmp = np.array(self._distaxis)
#         otmp = np.empty(ntask, dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         if np.any(otmp != self._distaxis):
#             raise ValueError
#         # check whether the global shape is consistent
#         itmp = np.array(self._shape)
#         otmp = np.empty((ntask, len(self._shape)), dtype=np.int)
#         _comm.Allgather(itmp, otmp)
#         for i in range(ntask):
#             if np.any(otmp[i, :] != self._shape):
#                 raise ValueError
#         # check shape of local data
#         if self._distaxis < 0:
#             if self._data.shape != self._shape:
#                 raise ValueError
#         else:
#             itmp = np.array(self._shape)
#             itmp[self._distaxis] = _shareSize(self._shape[self._distaxis],
#                                               ntask, rank)
#             if np.any(self._data.shape != itmp):
#                 raise ValueError
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    @property
    def dtype(self):
        return self._data.dtype

    @property
    def shape(self):
        return self._shape

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def real(self):
Martin Reinecke's avatar
Martin Reinecke committed
127
        return data_object(self._shape, self._data.real, self._distaxis)
128 129 130

    @property
    def imag(self):
Martin Reinecke's avatar
Martin Reinecke committed
131
        return data_object(self._shape, self._data.imag, self._distaxis)
132

Martin Reinecke's avatar
Martin Reinecke committed
133 134 135 136 137 138
    def conj(self):
        return data_object(self._shape, self._data.conj(), self._distaxis)

    def conjugate(self):
        return data_object(self._shape, self._data.conjugate(), self._distaxis)

Martin Reinecke's avatar
Martin Reinecke committed
139
    def _contraction_helper(self, op, mpiop, axis):
140
        if axis is not None:
Martin Reinecke's avatar
Martin Reinecke committed
141
            if len(axis) == len(self._data.shape):
142 143
                axis = None
        if axis is None:
Martin Reinecke's avatar
Martin Reinecke committed
144
            res = np.array(getattr(self._data, op)())
Martin Reinecke's avatar
Martin Reinecke committed
145
            if (self._distaxis == -1):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
146
                return res[()]
Martin Reinecke's avatar
Martin Reinecke committed
147 148
            res2 = np.empty((), dtype=res.dtype)
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
149
            return res2[()]
150 151

        if self._distaxis in axis:
Martin Reinecke's avatar
Martin Reinecke committed
152 153
            res = getattr(self._data, op)(axis=axis)
            res2 = np.empty_like(res)
Martin Reinecke's avatar
Martin Reinecke committed
154
            _comm.Allreduce(res, res2, mpiop)
Martin Reinecke's avatar
Martin Reinecke committed
155
            return from_global_data(res2, distaxis=0)
156
        else:
Martin Reinecke's avatar
Martin Reinecke committed
157
            # perform the contraction on the local data
Martin Reinecke's avatar
Martin Reinecke committed
158 159
            res = getattr(self._data, op)(axis=axis)
            if self._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
160
                return from_global_data(res, distaxis=0)
Martin Reinecke's avatar
Martin Reinecke committed
161
            shp = list(res.shape)
Martin Reinecke's avatar
Martin Reinecke committed
162
            shift = 0
Martin Reinecke's avatar
Martin Reinecke committed
163
            for ax in axis:
Martin Reinecke's avatar
Martin Reinecke committed
164 165
                if ax < self._distaxis:
                    shift += 1
Martin Reinecke's avatar
Martin Reinecke committed
166 167
            shp[self._distaxis-shift] = self.shape[self._distaxis]
            return from_local_data(shp, res, self._distaxis-shift)
168 169 170

    def sum(self, axis=None):
        return self._contraction_helper("sum", MPI.SUM, axis)
Martin Reinecke's avatar
Martin Reinecke committed
171

172 173 174
    def prod(self, axis=None):
        return self._contraction_helper("prod", MPI.PROD, axis)

175 176
#    def min(self, axis=None):
#        return self._contraction_helper("min", MPI.MIN, axis)
Martin Reinecke's avatar
Martin Reinecke committed
177

178 179
#    def max(self, axis=None):
#        return self._contraction_helper("max", MPI.MAX, axis)
180

181 182 183 184 185 186
    def mean(self, axis=None):
        if axis is None:
            sz = self.size
        else:
            sz = reduce(lambda x, y: x*y, [self.shape[i] for i in axis])
        return self.sum(axis)/sz
Martin Reinecke's avatar
Martin Reinecke committed
187

188 189
    def std(self, axis=None):
        return np.sqrt(self.var(axis))
Martin Reinecke's avatar
Martin Reinecke committed
190

Martin Reinecke's avatar
Martin Reinecke committed
191
    # FIXME: to be improved!
192 193 194
    def var(self, axis=None):
        if axis is not None and len(axis) != len(self.shape):
            raise ValueError("functionality not yet supported")
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
195 196
        return (abs(self-self.mean())**2).mean()

197
    def _binary_helper(self, other, op):
Martin Reinecke's avatar
Martin Reinecke committed
198
        a = self
199
        if isinstance(other, data_object):
Martin Reinecke's avatar
Martin Reinecke committed
200
            b = other
201 202 203 204
            if a._shape != b._shape:
                raise ValueError("shapes are incompatible.")
            if a._distaxis != b._distaxis:
                raise ValueError("distributions are incompatible.")
Martin Reinecke's avatar
Martin Reinecke committed
205 206
            a = a._data
            b = b._data
Martin Reinecke's avatar
Martin Reinecke committed
207 208 209 210 211
        elif np.isscalar(other):
            a = a._data
            b = other
        else:
            return NotImplemented
212 213

        tval = getattr(a, op)(b)
Martin Reinecke's avatar
Martin Reinecke committed
214 215 216 217
        if tval is a:
            return self
        else:
            return data_object(self._shape, tval, self._distaxis)
218

Martin Reinecke's avatar
Martin Reinecke committed
219 220 221
    def clip(self, min=None, max=None):
        return data_object(self._shape, np.clip(self._data, min, max))

222
    def __neg__(self):
Martin Reinecke's avatar
Martin Reinecke committed
223
        return data_object(self._shape, -self._data, self._distaxis)
224 225

    def __abs__(self):
226
        return data_object(self._shape, abs(self._data), self._distaxis)
227 228

    def all(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
229
        return self.sum() == self.size
230 231

    def any(self):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
232
        return self.sum() != 0
233

Martin Reinecke's avatar
fixes  
Martin Reinecke committed
234 235
    def fill(self, value):
        self._data.fill(value)
236

237

238 239 240 241 242 243 244 245 246 247 248 249 250 251
for op in ["__add__", "__radd__", "__iadd__",
           "__sub__", "__rsub__", "__isub__",
           "__mul__", "__rmul__", "__imul__",
           "__div__", "__rdiv__", "__idiv__",
           "__truediv__", "__rtruediv__", "__itruediv__",
           "__floordiv__", "__rfloordiv__", "__ifloordiv__",
           "__pow__", "__rpow__", "__ipow__",
           "__lt__", "__le__", "__gt__", "__ge__", "__eq__", "__ne__"]:
    def func(op):
        def func2(self, other):
            return self._binary_helper(other, op=op)
        return func2
    setattr(data_object, op, func(op))

Martin Reinecke's avatar
Martin Reinecke committed
252

Martin Reinecke's avatar
Martin Reinecke committed
253
def full(shape, fill_value, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
254 255
    return data_object(shape, np.full(local_shape(shape, distaxis),
                                      fill_value, dtype), distaxis)
256 257


Martin Reinecke's avatar
Martin Reinecke committed
258 259 260 261 262 263
def uniform_full(shape, fill_value, dtype=None, distaxis=0):
    return data_object(
        shape, np.broadcast_to(fill_value, local_shape(shape, distaxis)),
        distaxis)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
264
def empty(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
265 266
    return data_object(shape, np.empty(local_shape(shape, distaxis),
                                       dtype), distaxis)
267 268


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
269
def zeros(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
270 271
    return data_object(shape, np.zeros(local_shape(shape, distaxis), dtype),
                       distaxis)
272 273


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
274
def ones(shape, dtype=None, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
275 276
    return data_object(shape, np.ones(local_shape(shape, distaxis), dtype),
                       distaxis)
277 278 279 280 281 282 283


def empty_like(a, dtype=None):
    return data_object(np.empty_like(a._data, dtype))


def vdot(a, b):
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
284
    tmp = np.array(np.vdot(a._data, b._data))
Martin Reinecke's avatar
Martin Reinecke committed
285
    if a._distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
286
        return tmp[()]
Martin Reinecke's avatar
Martin Reinecke committed
287 288
    res = np.empty((), dtype=tmp.dtype)
    _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
289
    return res[()]
290 291 292


def _math_helper(x, function, out):
293
    function = getattr(np, function)
294 295 296 297
    if out is not None:
        function(x._data, out=out._data)
        return out
    else:
Martin Reinecke's avatar
Martin Reinecke committed
298
        return data_object(x.shape, function(x._data), x._distaxis)
299 300


301
_current_module = sys.modules[__name__]
Martin Reinecke's avatar
Martin Reinecke committed
302

303 304
for f in ["sqrt", "exp", "log", "tanh", "conjugate", "sin", "cos", "tan",
          "sinh", "cosh", "sinc", "absolute", "sign"]:
305 306 307 308 309
    def func(f):
        def func2(x, out=None):
            return _math_helper(x, f, out)
        return func2
    setattr(_current_module, f, func(f))
310 311


312
def clipped_exp(x):
Martin Reinecke's avatar
fix  
Martin Reinecke committed
313
    return data_object(x.shape, np.exp(np.clip(x.data, -300, 300), x.distaxis))
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
314 315


Martin Reinecke's avatar
Martin Reinecke committed
316 317
def clip(x, a_min=None, a_max=None):
    return data_object(x.shape, np.clip(x.data, a_min, a_max), x.distaxis)
318 319


Martin Reinecke's avatar
Martin Reinecke committed
320 321 322 323 324 325 326 327 328 329 330 331
def from_object(object, dtype, copy, set_locked):
    if dtype is None:
        dtype = object.dtype
    dtypes_equal = dtype == object.dtype
    if set_locked and dtypes_equal and locked(object):
        return object
    if not dtypes_equal and not copy:
        raise ValueError("cannot change data type without copying")
    if set_locked and not copy:
        raise ValueError("cannot lock object without copying")
    data = np.array(object._data, dtype=dtype, copy=copy)
    if set_locked:
Martin Reinecke's avatar
fix  
Martin Reinecke committed
332
        data.flags.writeable = False
Martin Reinecke's avatar
Martin Reinecke committed
333
    return data_object(object._shape, data, distaxis=object._distaxis)
334 335


Martin Reinecke's avatar
Martin Reinecke committed
336 337
# This function draws all random numbers on all tasks, to produce the same
# array independent on the number of tasks
Martin Reinecke's avatar
Martin Reinecke committed
338 339 340
# MR FIXME: depending on what is really wanted/needed (i.e. same result
# independent of number of tasks, performance etc.) we need to adjust the
# algorithm.
Martin Reinecke's avatar
Martin Reinecke committed
341
def from_random(random_type, shape, dtype=np.float64, **kwargs):
342
    generator_function = getattr(Random, random_type)
Martin Reinecke's avatar
Martin Reinecke committed
343
    if len(shape) == 0:
Martin Reinecke's avatar
Martin Reinecke committed
344 345 346
        ldat = generator_function(dtype=dtype, shape=shape, **kwargs)
        ldat = _comm.bcast(ldat)
        return from_local_data(shape, ldat, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
347 348 349 350 351 352 353
    for i in range(ntask):
        lshape = list(shape)
        lshape[0] = _shareSize(shape[0], ntask, i)
        ldat = generator_function(dtype=dtype, shape=lshape, **kwargs)
        if i == rank:
            outdat = ldat
    return from_local_data(shape, outdat, distaxis=0)
354

Martin Reinecke's avatar
Martin Reinecke committed
355

Martin Reinecke's avatar
Martin Reinecke committed
356 357 358 359
def local_data(arr):
    return arr._data


360 361
def ibegin_from_shape(glob_shape, distaxis=0):
    res = [0] * len(glob_shape)
Martin Reinecke's avatar
Martin Reinecke committed
362
    if distaxis < 0:
363 364 365 366 367
        return res
    res[distaxis] = _shareRange(glob_shape[distaxis], ntask, rank)[0]
    return tuple(res)


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
368 369
def ibegin(arr):
    res = [0] * arr._data.ndim
Martin Reinecke's avatar
Martin Reinecke committed
370
    res[arr._distaxis] = _shareRange(arr._shape[arr._distaxis], ntask, rank)[0]
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
371
    return tuple(res)
Martin Reinecke's avatar
Martin Reinecke committed
372 373


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
374 375
def np_allreduce_sum(arr):
    res = np.empty_like(arr)
Martin Reinecke's avatar
Martin Reinecke committed
376
    _comm.Allreduce(arr, res, MPI.SUM)
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
377
    return res
Martin Reinecke's avatar
Martin Reinecke committed
378 379


380 381 382 383 384 385
def np_allreduce_min(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MIN)
    return res


Martin Reinecke's avatar
fixes  
Martin Reinecke committed
386 387 388 389 390 391
def np_allreduce_max(arr):
    res = np.empty_like(arr)
    _comm.Allreduce(arr, res, MPI.MAX)
    return res


Martin Reinecke's avatar
Martin Reinecke committed
392 393 394 395
def distaxis(arr):
    return arr._distaxis


Martin Reinecke's avatar
Martin Reinecke committed
396
def from_local_data(shape, arr, distaxis=0):
Martin Reinecke's avatar
Martin Reinecke committed
397 398 399
    return data_object(shape, arr, distaxis)


400 401 402
def from_global_data(arr, sum_up=False, distaxis=0):
    if sum_up:
        arr = np_allreduce_sum(arr)
Martin Reinecke's avatar
Martin Reinecke committed
403
    if distaxis == -1:
Martin Reinecke's avatar
Martin Reinecke committed
404
        return data_object(arr.shape, arr, distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
405
    lo, hi = _shareRange(arr.shape[distaxis], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
406
    sl = [slice(None)]*len(arr.shape)
Martin Reinecke's avatar
Martin Reinecke committed
407
    sl[distaxis] = slice(lo, hi)
408
    return data_object(arr.shape, arr[tuple(sl)], distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
409 410


Martin Reinecke's avatar
Martin Reinecke committed
411 412
def to_global_data(arr):
    if arr._distaxis == -1:
Martin Reinecke's avatar
fixes  
Martin Reinecke committed
413 414 415 416 417
        return arr._data
    tmp = redistribute(arr, dist=-1)
    return tmp._data


418 419 420 421 422 423 424
def to_global_data_rw(arr):
    if arr._distaxis == -1:
        return arr._data.copy()
    tmp = redistribute(arr, dist=-1)
    return tmp._data


Martin Reinecke's avatar
Martin Reinecke committed
425
def redistribute(arr, dist=None, nodist=None):
Martin Reinecke's avatar
Martin Reinecke committed
426 427 428
    if dist is not None:
        if nodist is not None:
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
429
        if dist == arr._distaxis:
Martin Reinecke's avatar
Martin Reinecke committed
430 431 432 433 434 435
            return arr
    else:
        if nodist is None:
            raise ValueError
        if arr._distaxis not in nodist:
            return arr
Martin Reinecke's avatar
Martin Reinecke committed
436
        dist = -1
Martin Reinecke's avatar
Martin Reinecke committed
437 438
        for i in range(len(arr.shape)):
            if i not in nodist:
Martin Reinecke's avatar
Martin Reinecke committed
439
                dist = i
Martin Reinecke's avatar
Martin Reinecke committed
440
                break
Martin Reinecke's avatar
Martin Reinecke committed
441

Martin Reinecke's avatar
Martin Reinecke committed
442
    if arr._distaxis == -1:  # all data available, just pick the proper subset
443
        return from_global_data(arr._data, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
444
    if dist == -1:  # gather all data on all tasks
Martin Reinecke's avatar
Martin Reinecke committed
445
        tmp = np.moveaxis(arr._data, arr._distaxis, 0)
Martin Reinecke's avatar
Martin Reinecke committed
446 447
        slabsize = np.prod(tmp.shape[1:])*tmp.itemsize
        sz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
448
        for i in range(ntask):
Martin Reinecke's avatar
Martin Reinecke committed
449 450 451 452
            sz[i] = slabsize*_shareSize(arr.shape[arr._distaxis], ntask, i)
        disp = np.empty(ntask, dtype=np.int)
        disp[0] = 0
        disp[1:] = np.cumsum(sz[:-1])
Martin Reinecke's avatar
Martin Reinecke committed
453
        tmp = np.require(tmp, requirements="C")
Martin Reinecke's avatar
Martin Reinecke committed
454 455
        out = np.empty(arr.size, dtype=arr.dtype)
        _comm.Allgatherv(tmp, [out, sz, disp, MPI.BYTE])
Martin Reinecke's avatar
Martin Reinecke committed
456 457 458 459
        shp = np.array(arr._shape)
        shp[1:arr._distaxis+1] = shp[0:arr._distaxis]
        shp[0] = arr.shape[arr._distaxis]
        out = out.reshape(shp)
Martin Reinecke's avatar
Martin Reinecke committed
460
        out = np.moveaxis(out, 0, arr._distaxis)
Martin Reinecke's avatar
Martin Reinecke committed
461
        return from_global_data(out, distaxis=-1)
Martin Reinecke's avatar
Martin Reinecke committed
462

Martin Reinecke's avatar
Martin Reinecke committed
463
    # real redistribution via Alltoallv
Martin Reinecke's avatar
Martin Reinecke committed
464
    ssz0 = arr._data.size//arr.shape[dist]
Martin Reinecke's avatar
Martin Reinecke committed
465
    ssz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
466 467 468
    rszall = arr.size//arr.shape[dist]*_shareSize(arr.shape[dist], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[arr._distaxis]
Martin Reinecke's avatar
Martin Reinecke committed
469
    rsz = np.empty(ntask, dtype=np.int)
Martin Reinecke's avatar
Martin Reinecke committed
470 471 472 473 474 475 476 477 478 479 480 481
    if dist == 0:  # shortcut possible
        sbuf = np.ascontiguousarray(arr._data)
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
            ssz[i] = ssz0*(hi-lo)
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    else:
        sbuf = np.empty(arr._data.size, dtype=arr.dtype)
        sslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[dist], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
482
            sslice[dist] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
483
            ssz[i] = ssz0*(hi-lo)
484
            sbuf[ofs:ofs+ssz[i]] = arr._data[tuple(sslice)].flat
Martin Reinecke's avatar
Martin Reinecke committed
485 486 487 488
            ofs += ssz[i]
            rsz[i] = rsz0*_shareSize(arr.shape[arr._distaxis], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
489 490
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
Martin Reinecke's avatar
Martin Reinecke committed
491 492
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
493
    _comm.Alltoallv(s_msg, r_msg)
Martin Reinecke's avatar
Martin Reinecke committed
494
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
495 496 497 498
    if arr._distaxis == 0:
        rbuf = rbuf.reshape(local_shape(arr.shape, dist))
        arrnew = from_local_data(arr.shape, rbuf, distaxis=dist)
    else:
Martin Reinecke's avatar
Martin Reinecke committed
499
        arrnew = np.empty(local_shape(arr.shape, dist), dtype=arr.dtype)
Martin Reinecke's avatar
Martin Reinecke committed
500 501 502 503
        rslice = [slice(None)]*arr._data.ndim
        ofs = 0
        for i in range(ntask):
            lo, hi = _shareRange(arr.shape[arr._distaxis], ntask, i)
Martin Reinecke's avatar
Martin Reinecke committed
504
            rslice[arr._distaxis] = slice(lo, hi)
Martin Reinecke's avatar
Martin Reinecke committed
505
            sz = rsz[i]//arr._data.itemsize
506
            arrnew[tuple(rslice)].flat = rbuf[ofs:ofs+sz]
Martin Reinecke's avatar
Martin Reinecke committed
507
            ofs += sz
Martin Reinecke's avatar
Martin Reinecke committed
508
        arrnew = from_local_data(arr.shape, arrnew, distaxis=dist)
Martin Reinecke's avatar
Martin Reinecke committed
509
    return arrnew
Martin Reinecke's avatar
Martin Reinecke committed
510 511


Martin Reinecke's avatar
Martin Reinecke committed
512 513
def transpose(arr):
    if len(arr.shape) != 2 or arr._distaxis != 0:
Martin Reinecke's avatar
Martin Reinecke committed
514
        raise ValueError("bad input")
Martin Reinecke's avatar
Martin Reinecke committed
515 516 517 518 519 520 521 522 523 524 525
    ssz0 = arr._data.size//arr.shape[1]
    ssz = np.empty(ntask, dtype=np.int)
    rszall = arr.size//arr.shape[1]*_shareSize(arr.shape[1], ntask, rank)
    rbuf = np.empty(rszall, dtype=arr.dtype)
    rsz0 = rszall//arr.shape[0]
    rsz = np.empty(ntask, dtype=np.int)
    sbuf = np.empty(arr._data.size, dtype=arr.dtype)
    ofs = 0
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[1], ntask, i)
        ssz[i] = ssz0*(hi-lo)
Martin Reinecke's avatar
Martin Reinecke committed
526
        sbuf[ofs:ofs+ssz[i]] = arr._data[:, lo:hi].flat
Martin Reinecke's avatar
Martin Reinecke committed
527 528 529 530 531 532 533 534 535 536
        ofs += ssz[i]
        rsz[i] = rsz0*_shareSize(arr.shape[0], ntask, i)
    ssz *= arr._data.itemsize
    rsz *= arr._data.itemsize
    sdisp = np.append(0, np.cumsum(ssz[:-1]))
    rdisp = np.append(0, np.cumsum(rsz[:-1]))
    s_msg = [sbuf, (ssz, sdisp), MPI.BYTE]
    r_msg = [rbuf, (rsz, rdisp), MPI.BYTE]
    _comm.Alltoallv(s_msg, r_msg)
    del sbuf  # free memory
Martin Reinecke's avatar
Martin Reinecke committed
537
    sz2 = _shareSize(arr.shape[1], ntask, rank)
Martin Reinecke's avatar
Martin Reinecke committed
538 539
    arrnew = np.empty((sz2, arr.shape[0]), dtype=arr.dtype)
    ofs = 0
Martin Reinecke's avatar
Martin Reinecke committed
540 541 542
    for i in range(ntask):
        lo, hi = _shareRange(arr.shape[0], ntask, i)
        sz = rsz[i]//arr._data.itemsize
Martin Reinecke's avatar
Martin Reinecke committed
543
        arrnew[:, lo:hi] = rbuf[ofs:ofs+sz].reshape(hi-lo, sz2).T
Martin Reinecke's avatar
Martin Reinecke committed
544
        ofs += sz
545
    return from_local_data((arr.shape[1], arr.shape[0]), arrnew, 0)
Martin Reinecke's avatar
Martin Reinecke committed
546 547


Martin Reinecke's avatar
Martin Reinecke committed
548 549
def default_distaxis():
    return 0
550 551 552 553 554 555 556 557


def lock(arr):
    arr._data.flags.writeable = False


def locked(arr):
    return not arr._data.flags.writeable
Martin Reinecke's avatar
Martin Reinecke committed
558 559 560 561 562 563 564 565 566 567 568 569


def ensure_not_distributed(arr, axes):
    if arr._distaxis in axes:
        arr = redistribute(arr, nodist=axes)
    return arr, arr._data


def ensure_default_distributed(arr):
    if arr._distaxis != 0:
        arr = redistribute(arr, dist=0)
    return arr
Martin Reinecke's avatar
Martin Reinecke committed
570 571 572 573 574 575


def absmax(arr):
    if arr._data.size == 0:
        tmp = np.array(0, dtype=arr._data.dtype)
    else:
576
        tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=np.inf))
Martin Reinecke's avatar
Martin Reinecke committed
577 578 579 580 581 582 583 584
    res = np.empty_like(tmp)
    _comm.Allreduce(tmp, res, MPI.MAX)
    return res[()]


def norm(arr, ord=2):
    if ord == np.inf:
        return absmax(arr)
585
    tmp = np.asarray(np.linalg.norm(arr._data.reshape(-1), ord=ord) ** ord)
Martin Reinecke's avatar
Martin Reinecke committed
586
    res = np.empty_like(tmp)
Martin Reinecke's avatar
Martin Reinecke committed
587 588 589 590
    if len(arr._data.shape) == 0:
        res = tmp
    else:
        _comm.Allreduce(tmp, res, MPI.SUM)
Martin Reinecke's avatar
Martin Reinecke committed
591
    return res[()] ** (1./ord)