log_rg_space.py 3.5 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Philipp Arras's avatar
Philipp Arras committed
17

Martin Reinecke's avatar
Martin Reinecke committed
18
from functools import reduce
Philipp Arras's avatar
Philipp Arras committed
19

20
import numpy as np
Philipp Arras's avatar
Philipp Arras committed
21

22
23
24
25
26
from ..field import Field
from .structured_domain import StructuredDomain


class LogRGSpace(StructuredDomain):
27
    """Represents a logarithmic Cartesian grid.
28
29
30
31
32
33
34

    Parameters
    ----------
    shape : int or tuple of int
        Number of grid points or numbers of gridpoints along each axis.
    bindistances : float or tuple of float
        Distance between two grid points along each axis. These are
Philipp Arras's avatar
Docs    
Philipp Arras committed
35
        measured on logarithmic scale and are constant therefore.
36
    t_0 : float or tuple of float
Philipp Arras's avatar
Docs    
Philipp Arras committed
37
        Coordinate of pixel ndim*(1,).
38
39
    harmonic : bool, optional
        Whether the space represents a grid in position or harmonic space.
Philipp Arras's avatar
Philipp Arras committed
40
        Default: False.
41
    """
42
43
44
45
46
47
48
49
50
51
52
53
    _needed_for_hash = ['_shape', '_bindistances', '_t_0', '_harmonic']

    def __init__(self, shape, bindistances, t_0, harmonic=False):
        self._harmonic = bool(harmonic)

        if np.isscalar(shape):
            shape = (shape,)
        self._shape = tuple(int(i) for i in shape)

        self._bindistances = tuple(bindistances)
        self._t_0 = tuple(t_0)

54
55
        self._dim = int(reduce(lambda x, y: x*y, self._shape))
        self._dvol = float(reduce(lambda x, y: x*y, self._bindistances))
56
57
58
59
60
61
62
63
64

    @property
    def harmonic(self):
        return self._harmonic

    @property
    def shape(self):
        return self._shape

Martin Reinecke's avatar
bug fix    
Martin Reinecke committed
65
    @property
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def scalar_dvol(self):
        return self._dvol

    @property
    def bindistances(self):
        return np.array(self._bindistances)

    @property
    def size(self):
        return np.prod(self._shape)

    @property
    def t_0(self):
        return np.array(self._t_0)

    def __repr__(self):
82
83
        return ("LogRGSpace(shape={}, harmonic={})".format(
            self.shape, self.harmonic))
84
85

    def get_default_codomain(self):
86
87
        codomain_bindistances = 1./(self.bindistances*self.shape)
        return LogRGSpace(self.shape, codomain_bindistances, self._t_0, True)
88
89

    def get_k_length_array(self):
90
91
92
93
94
95
96
97
98
99
100
        if not self.harmonic:
            raise NotImplementedError
        ks = self.get_k_array()
        return Field.from_global_data(self, np.linalg.norm(ks, axis=0))

    def get_k_array(self):
        ndim = len(self.shape)
        k_array = np.zeros((ndim,) + self.shape)
        dist = self.bindistances
        for i in range(ndim):
            ks = np.zeros(self.shape[i])
Martin Reinecke's avatar
Martin Reinecke committed
101
102
            ks[1:] = np.minimum(self.shape[i] - 1 - np.arange(self.shape[i]-1),
                                np.arange(self.shape[i]-1)) * dist[i]
103
104
105
106
107
            if self.harmonic:
                ks[0] = np.nan
            else:
                ks[0] = -np.inf
                ks[1:] += self.t_0[i]
Martin Reinecke's avatar
Martin Reinecke committed
108
109
            k_array[i] += ks.reshape((1,)*i + (self.shape[i],)
                                     + (1,)*(ndim-i-1))
110
        return k_array