plot.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15 16 17 18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19 20
from __future__ import division
import numpy as np
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
21
from ..import Field, RGSpace, HPSpace, GLSpace, PowerSpace, dobj
Martin Reinecke's avatar
Martin Reinecke committed
22 23 24 25 26 27 28 29 30 31
import os

# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
32
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
33

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
34

Martin Reinecke's avatar
Martin Reinecke committed
35 36 37
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
38
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
39 40 41 42 43 44 45 46 47 48 49 50 51 52
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
53

Martin Reinecke's avatar
Martin Reinecke committed
54 55 56 57 58 59 60 61 62
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
63

Martin Reinecke's avatar
Martin Reinecke committed
64
def _makeplot(name):
65
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
66
    if dobj.rank != 0:
67
        plt.close()
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
68
        return
Martin Reinecke's avatar
Martin Reinecke committed
69 70
    if name is None:
        plt.show()
71
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
72 73
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
74
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
75 76
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
77
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
78 79
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
80 81 82 83 84 85 86 87 88 89
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
90 91 92
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
93

Martin Reinecke's avatar
Martin Reinecke committed
94
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
95
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
96
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
97 98 99 100
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
101 102
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
103

Martin Reinecke's avatar
Martin Reinecke committed
104 105 106 107 108 109 110 111 112
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
159 160 161

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
162
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
163 164
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
165
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
166

Martin Reinecke's avatar
Martin Reinecke committed
167

Martin Reinecke's avatar
Martin Reinecke committed
168
def plot(f, **kwargs):
169
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
170
    _register_cmaps()
171 172 173
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
174
        raise TypeError("incorrect data type")
175 176 177 178 179 180 181 182 183 184 185
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
186
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
187
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
188

clienhar's avatar
clienhar committed
189
    label = kwargs.pop("label", None)
Martin Reinecke's avatar
Martin Reinecke committed
190 191
    if label is None:
        label = [None] * len(f)
192
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
193 194
        label = [label]

clienhar's avatar
clienhar committed
195
    linewidth = kwargs.pop("linewidth", None)
Philipp Arras's avatar
Philipp Arras committed
196
    if linewidth is None:
Martin Reinecke's avatar
Martin Reinecke committed
197
        linewidth = [1.] * len(f)
Philipp Arras's avatar
Philipp Arras committed
198 199 200
    if not isinstance(linewidth, list):
        linewidth = [linewidth]

clienhar's avatar
clienhar committed
201
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
202 203 204 205 206
    if alpha is None:
        alpha = [None] * len(f)
    if not isinstance(alpha, list):
        alpha = [alpha]

207
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
208
    fig = plt.figure()
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
209
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
210

clienhar's avatar
clienhar committed
211 212
    xsize = kwargs.pop("xsize", 6)
    ysize = kwargs.pop("ysize", 6)
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
213
    fig.set_size_inches(xsize, ysize)
clienhar's avatar
clienhar committed
214 215 216 217
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
218
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
219
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
220 221
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
222
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
223
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
224
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
225 226
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
227
            _limit_xy(**kwargs)
228 229
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
230
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
231
            return
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
232
        elif len(dom.shape) == 2:
233
            f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
234 235 236 237
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Philipp Arras's avatar
Philipp Arras committed
238 239
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
240
            im = ax.imshow(fld.to_global_data(),
Martin Reinecke's avatar
Martin Reinecke committed
241
                           extent=[xc[0], xc[-1], yc[0], yc[-1]],
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
242
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
243
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
244 245 246 247
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
248
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
249 250
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
251 252 253 254 255
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
Philipp Arras's avatar
Philipp Arras committed
256
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
257
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
258
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
259 260
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
261
        _limit_xy(**kwargs)
262 263
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
264
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
265 266
        return
    elif isinstance(dom, HPSpace):
267
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
268 269 270 271 272 273 274
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
275 276
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.size//12)), "RING")
        res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
277
        plt.axis('off')
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
278
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
279
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
280
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
281
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
282 283
        return
    elif isinstance(dom, GLSpace):
284
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
285 286 287 288 289 290 291 292
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
Martin Reinecke's avatar
tweaks  
Martin Reinecke committed
293
        res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
294 295

        plt.axis('off')
Martin Reinecke's avatar
PEP8  
Martin Reinecke committed
296
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
297
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
298
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
299
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
300 301 302
        return

    raise ValueError("Field type not(yet) supported")