plot.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
15
16
17
18
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

Martin Reinecke's avatar
Martin Reinecke committed
19
20
from __future__ import division
import numpy as np
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
21
from ..import Field, RGSpace, HPSpace, GLSpace, PowerSpace, dobj
Martin Reinecke's avatar
Martin Reinecke committed
22
23
24
25
26
27
28
29
30
31
import os

# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
32
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
33

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
34

Martin Reinecke's avatar
Martin Reinecke committed
35
36
37
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
38
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    xc = (xsize-1)*0.5
    yc = (ysize-1)*0.5
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
    u = 2*(u-xc)/(xc/1.02)
    v = (v-yc)/(yc/1.02)

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
53

Martin Reinecke's avatar
Martin Reinecke committed
54
55
56
57
58
59
60
61
62
def _find_closest(A, target):
    # A must be sorted
    idx = A.searchsorted(target)
    idx = np.clip(idx, 1, len(A)-1)
    left = A[idx-1]
    right = A[idx]
    idx -= target - left < right - target
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
63

Martin Reinecke's avatar
Martin Reinecke committed
64
def _makeplot(name):
65
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
66
    if dobj.rank != 0:
67
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
68
        return
Martin Reinecke's avatar
Martin Reinecke committed
69
70
    if name is None:
        plt.show()
71
        plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
72
73
        return
    extension = os.path.splitext(name)[1]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
74
    if extension == ".pdf":
Martin Reinecke's avatar
Martin Reinecke committed
75
76
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
77
    elif extension == ".png":
Martin Reinecke's avatar
Martin Reinecke committed
78
79
        plt.savefig(name)
        plt.close()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
80
81
82
83
84
85
86
87
88
89
    # elif extension==".html":
        # import mpld3
        # mpld3.save_html(plt.gcf(),fileobj=name,no_extras=True)
        # import plotly.offline as py
        # import plotly.tools as tls
        # plotly_fig = tls.mpl_to_plotly(plt.gcf())
        # py.plot(plotly_fig,filename=name)
        # py.plot_mpl(plt.gcf(),filename=name)
        # import bokeh
        # bokeh.mpl.to_bokeh(plt.gcf())
Martin Reinecke's avatar
Martin Reinecke committed
90
91
92
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
93

Martin Reinecke's avatar
Martin Reinecke committed
94
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
95
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
96
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
97
98
99
100
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
101
102
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
103

Martin Reinecke's avatar
Martin Reinecke committed
104
105
106
107
108
109
110
111
112
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
159
160
161

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
162
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
163
164
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
165
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
166

Martin Reinecke's avatar
Martin Reinecke committed
167

Martin Reinecke's avatar
Martin Reinecke committed
168
def plot(f, **kwargs):
169
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
170
    _register_cmaps()
171
172
173
    if isinstance(f, Field):
        f = [f]
    if not isinstance(f, list):
Martin Reinecke's avatar
Martin Reinecke committed
174
        raise TypeError("incorrect data type")
175
176
177
178
179
180
181
182
183
184
185
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
            if len(dom) != 1:
                raise ValueError("input field must have exactly one domain")
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
            if not (isinstance(dom[0], PowerSpace) or
186
                    (isinstance(dom[0], RGSpace) and len(dom[0].shape) == 1)):
187
                raise ValueError("PowerSpace or 1D RGSpace required")
Martin Reinecke's avatar
Martin Reinecke committed
188

clienhar's avatar
clienhar committed
189
    label = kwargs.pop("label", None)
Martin Reinecke's avatar
Martin Reinecke committed
190
191
    if label is None:
        label = [None] * len(f)
192
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
193
194
        label = [label]

clienhar's avatar
clienhar committed
195
    linewidth = kwargs.pop("linewidth", None)
Philipp Arras's avatar
Philipp Arras committed
196
    if linewidth is None:
Martin Reinecke's avatar
Martin Reinecke committed
197
        linewidth = [1.] * len(f)
Philipp Arras's avatar
Philipp Arras committed
198
199
200
    if not isinstance(linewidth, list):
        linewidth = [linewidth]

clienhar's avatar
clienhar committed
201
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
202
203
204
205
206
    if alpha is None:
        alpha = [None] * len(f)
    if not isinstance(alpha, list):
        alpha = [alpha]

207
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
208
    fig = plt.figure()
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
209
    ax = fig.add_subplot(1, 1, 1)
Martin Reinecke's avatar
Martin Reinecke committed
210

clienhar's avatar
clienhar committed
211
212
    xsize = kwargs.pop("xsize", 6)
    ysize = kwargs.pop("ysize", 6)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
213
    fig.set_size_inches(xsize, ysize)
clienhar's avatar
clienhar committed
214
215
216
217
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
Martin Reinecke's avatar
Martin Reinecke committed
218
    if isinstance(dom, RGSpace):
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
219
        if len(dom.shape) == 1:
Martin Reinecke's avatar
Martin Reinecke committed
220
221
            npoints = dom.shape[0]
            dist = dom.distances[0]
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
222
            xcoord = np.arange(npoints, dtype=np.float64)*dist
Martin Reinecke's avatar
Martin Reinecke committed
223
            for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
224
                ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
225
226
                plt.plot(xcoord, ycoord, label=label[i],
                         linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
227
            _limit_xy(**kwargs)
228
229
            if label != ([None]*len(f)):
                plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
230
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
231
            return
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
232
        elif len(dom.shape) == 2:
233
            f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
234
235
236
237
            nx = dom.shape[0]
            ny = dom.shape[1]
            dx = dom.distances[0]
            dy = dom.distances[1]
Philipp Arras's avatar
Philipp Arras committed
238
239
            xc = np.arange(nx, dtype=np.float64)*dx
            yc = np.arange(ny, dtype=np.float64)*dy
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
240
            im = ax.imshow(fld.to_global_data(),
Martin Reinecke's avatar
Martin Reinecke committed
241
                           extent=[xc[0], xc[-1], yc[0], yc[-1]],
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
242
                           vmin=kwargs.get("zmin"),
Martin Reinecke's avatar
Martin Reinecke committed
243
                           vmax=kwargs.get("zmax"), cmap=cmap, origin="lower")
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
244
245
246
247
            # from mpl_toolkits.axes_grid1 import make_axes_locatable
            # divider = make_axes_locatable(ax)
            # cax = divider.append_axes("right", size="5%", pad=0.05)
            # plt.colorbar(im,cax=cax)
Martin Reinecke's avatar
Martin Reinecke committed
248
            plt.colorbar(im)
Martin Reinecke's avatar
Martin Reinecke committed
249
250
            _limit_xy(**kwargs)
            _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
251
252
253
254
255
            return
    elif isinstance(dom, PowerSpace):
        plt.xscale('log')
        plt.yscale('log')
        plt.title('power')
Philipp Arras's avatar
Philipp Arras committed
256
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
257
        for i, fld in enumerate(f):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
258
            ycoord = fld.to_global_data()
Martin Reinecke's avatar
Martin Reinecke committed
259
260
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
261
        _limit_xy(**kwargs)
262
263
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
264
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
265
266
        return
    elif isinstance(dom, HPSpace):
267
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
268
269
270
271
272
273
274
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)

        ptg = np.empty((phi.size, 2), dtype=np.float64)
        ptg[:, 0] = theta
        ptg[:, 1] = phi
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
275
276
        base = pyHealpix.Healpix_Base(int(np.sqrt(f.size//12)), "RING")
        res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
277
        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
278
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
279
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
280
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
281
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
282
283
        return
    elif isinstance(dom, GLSpace):
284
        f = f[0]
Martin Reinecke's avatar
Martin Reinecke committed
285
286
287
288
289
290
291
292
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
        ra = np.linspace(0, 2*np.pi, dom.nlon+1)
        dec = pyHealpix.GL_thetas(dom.nlat)
        ilat = _find_closest(dec, theta)
        ilon = _find_closest(ra, phi)
        ilon = np.where(ilon == dom.nlon, 0, ilon)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
293
        res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
294
295

        plt.axis('off')
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
296
        plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
Martin Reinecke's avatar
Martin Reinecke committed
297
                   cmap=cmap, origin="lower")
Martin Reinecke's avatar
Martin Reinecke committed
298
        plt.colorbar(orientation="horizontal")
Martin Reinecke's avatar
Martin Reinecke committed
299
        _makeplot(kwargs.get("name"))
Martin Reinecke's avatar
Martin Reinecke committed
300
301
302
        return

    raise ValueError("Field type not(yet) supported")