field.py 47.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

csongor's avatar
csongor committed
19
from __future__ import division
20
21

import itertools
csongor's avatar
csongor committed
22
23
import numpy as np

Theo Steininger's avatar
Theo Steininger committed
24
25
from keepers import Versionable,\
                    Loggable
Jait Dixit's avatar
Jait Dixit committed
26

27
from d2o import distributed_data_object,\
28
    STRATEGIES as DISTRIBUTION_STRATEGIES
csongor's avatar
csongor committed
29

30
from nifty.config import nifty_configuration as gc
csongor's avatar
csongor committed
31

32
from nifty.domain_object import DomainObject
33

34
from nifty.spaces.power_space import PowerSpace
csongor's avatar
csongor committed
35

csongor's avatar
csongor committed
36
import nifty.nifty_utilities as utilities
37
38
from nifty.random import Random

csongor's avatar
csongor committed
39

Jait Dixit's avatar
Jait Dixit committed
40
class Field(Loggable, Versionable, object):
Theo Steininger's avatar
Theo Steininger committed
41
42
43
    """ The discrete representation of a continuous field over multiple spaces.

    In NIFTY, Fields are used to store data arrays and carry all the needed
44
    metainformation (i.e. the domain) for operators to be able to work on them.
Theo Steininger's avatar
Theo Steininger committed
45
46
    In addition Field has methods to work with power-spectra.

47
48
49
50
    Parameters
    ----------
    domain : DomainObject
        One of the space types NIFTY supports. RGSpace, GLSpace, HPSpace,
Theo Steininger's avatar
Theo Steininger committed
51
        LMSpace or PowerSpace. It might also be a FieldArray, which is
52
        an unstructured domain.
Theo Steininger's avatar
Theo Steininger committed
53

54
55
56
57
    val : scalar, numpy.ndarray, distributed_data_object, Field
        The values the array should contain after init. A scalar input will
        fill the whole array with this scalar. If an array is provided the
        array's dimensions must match the domain's.
Theo Steininger's avatar
Theo Steininger committed
58

59
60
    dtype : type
        A numpy.type. Most common are int, float and complex.
Theo Steininger's avatar
Theo Steininger committed
61

62
63
64
65
66
67
    distribution_strategy: optional[{'fftw', 'equal', 'not', 'freeform'}]
        Specifies which distributor will be created and used.
        'fftw'      uses the distribution strategy of pyfftw,
        'equal'     tries to  distribute the data as uniform as possible
        'not'       does not distribute the data at all
        'freeform'  distribute the data according to the given local data/shape
Theo Steininger's avatar
Theo Steininger committed
68

69
70
71
72
73
    copy: boolean

    Attributes
    ----------
    val : distributed_data_object
Theo Steininger's avatar
Theo Steininger committed
74

75
76
77
78
79
80
81
    domain : DomainObject
        See Parameters.
    domain_axes : tuple of tuples
        Enumerates the axes of the Field
    dtype : type
        Contains the datatype stored in the Field.
    distribution_strategy : string
Theo Steininger's avatar
Theo Steininger committed
82
83
        Name of the used distribution_strategy.

84
85
86
87
88
89
90
    Raise
    -----
    TypeError
        Raised if
            *the given domain contains something that is not a DomainObject
             instance
            *val is an array that has a different dimension than the domain
Theo Steininger's avatar
Theo Steininger committed
91

92
93
94
95
96
97
98
99
100
101
102
    Examples
    --------
    >>> a = Field(RGSpace([4,5]),val=2)
    >>> a.val
    <distributed_data_object>
    array([[2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2],
           [2, 2, 2, 2, 2]])
    >>> a.dtype
    dtype('int64')
Theo Steininger's avatar
Theo Steininger committed
103

104
105
106
107
108
    See Also
    --------
    distributed_data_object

    """
109

Theo Steininger's avatar
Theo Steininger committed
110
    # ---Initialization methods---
111

112
    def __init__(self, domain=None, val=None, dtype=None,
113
                 distribution_strategy=None, copy=False):
csongor's avatar
csongor committed
114

115
        self.domain = self._parse_domain(domain=domain, val=val)
116
        self.domain_axes = self._get_axes_tuple(self.domain)
csongor's avatar
csongor committed
117

Theo Steininger's avatar
Theo Steininger committed
118
        self.dtype = self._infer_dtype(dtype=dtype,
119
                                       val=val)
120

121
122
123
        self.distribution_strategy = self._parse_distribution_strategy(
                                distribution_strategy=distribution_strategy,
                                val=val)
csongor's avatar
csongor committed
124

125
126
127
128
        if val is None:
            self._val = None
        else:
            self.set_val(new_val=val, copy=copy)
csongor's avatar
csongor committed
129

130
    def _parse_domain(self, domain, val=None):
131
        if domain is None:
132
133
134
135
            if isinstance(val, Field):
                domain = val.domain
            else:
                domain = ()
136
        elif isinstance(domain, DomainObject):
137
            domain = (domain,)
138
139
140
        elif not isinstance(domain, tuple):
            domain = tuple(domain)

csongor's avatar
csongor committed
141
        for d in domain:
142
            if not isinstance(d, DomainObject):
143
144
                raise TypeError(
                    "Given domain contains something that is not a "
145
                    "DomainObject instance.")
csongor's avatar
csongor committed
146
147
        return domain

Theo Steininger's avatar
Theo Steininger committed
148
149
150
151
152
153
154
155
156
157
    def _get_axes_tuple(self, things_with_shape, start=0):
        i = start
        axes_list = []
        for thing in things_with_shape:
            l = []
            for j in range(len(thing.shape)):
                l += [i]
                i += 1
            axes_list += [tuple(l)]
        return tuple(axes_list)
158

159
    def _infer_dtype(self, dtype, val):
csongor's avatar
csongor committed
160
        if dtype is None:
161
            try:
162
                dtype = val.dtype
163
            except AttributeError:
Theo Steininger's avatar
Theo Steininger committed
164
165
166
                try:
                    if val is None:
                        raise TypeError
167
                    dtype = np.result_type(val)
Theo Steininger's avatar
Theo Steininger committed
168
                except(TypeError):
169
                    dtype = np.dtype(gc['default_field_dtype'])
Theo Steininger's avatar
Theo Steininger committed
170
        else:
171
            dtype = np.dtype(dtype)
172

173
174
        dtype = np.result_type(dtype, np.float)

Theo Steininger's avatar
Theo Steininger committed
175
        return dtype
176

177
178
    def _parse_distribution_strategy(self, distribution_strategy, val):
        if distribution_strategy is None:
179
            if isinstance(val, distributed_data_object):
180
                distribution_strategy = val.distribution_strategy
181
            elif isinstance(val, Field):
182
                distribution_strategy = val.distribution_strategy
183
            else:
184
                self.logger.debug("distribution_strategy set to default!")
185
                distribution_strategy = gc['default_distribution_strategy']
186
        elif distribution_strategy not in DISTRIBUTION_STRATEGIES['global']:
187
188
189
            raise ValueError(
                    "distribution_strategy must be a global-type "
                    "strategy.")
190
        return distribution_strategy
191
192

    # ---Factory methods---
193

194
    @classmethod
195
    def from_random(cls, random_type, domain=None, dtype=None,
196
                    distribution_strategy=None, **kwargs):
197
198
199
200
201
        """ Draws a random field with the given parameters.

        Parameters
        ----------
        cls : class
Theo Steininger's avatar
Theo Steininger committed
202

203
204
205
        random_type : String
            'pm1', 'normal', 'uniform' are the supported arguments for this
            method.
Theo Steininger's avatar
Theo Steininger committed
206

207
208
        domain : DomainObject
            The domain of the output random field
Theo Steininger's avatar
Theo Steininger committed
209

210
211
        dtype : type
            The datatype of the output random field
Theo Steininger's avatar
Theo Steininger committed
212

213
214
        distribution_strategy : all supported distribution strategies
            The distribution strategy of the output random field
Theo Steininger's avatar
Theo Steininger committed
215

216
217
218
219
220
221
222
        Returns
        -------
        out : Field
            The output object.

        See Also
        --------
223
        power_synthesize
Theo Steininger's avatar
Theo Steininger committed
224

225
226

        """
Theo Steininger's avatar
Theo Steininger committed
227

228
        # create a initially empty field
229
        f = cls(domain=domain, dtype=dtype,
230
                distribution_strategy=distribution_strategy)
231
232
233
234
235
236
237

        # now use the processed input in terms of f in order to parse the
        # random arguments
        random_arguments = cls._parse_random_arguments(random_type=random_type,
                                                       f=f,
                                                       **kwargs)

Martin Reinecke's avatar
Martin Reinecke committed
238
        # extract the distributed_data_object from f and apply the appropriate
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        # random number generator to it
        sample = f.get_val(copy=False)
        generator_function = getattr(Random, random_type)
        sample.apply_generator(
            lambda shape: generator_function(dtype=f.dtype,
                                             shape=shape,
                                             **random_arguments))
        return f

    @staticmethod
    def _parse_random_arguments(random_type, f, **kwargs):
        if random_type == "pm1":
            random_arguments = {}

        elif random_type == "normal":
            mean = kwargs.get('mean', 0)
            std = kwargs.get('std', 1)
            random_arguments = {'mean': mean,
                                'std': std}

        elif random_type == "uniform":
            low = kwargs.get('low', 0)
            high = kwargs.get('high', 1)
            random_arguments = {'low': low,
                                'high': high}

csongor's avatar
csongor committed
265
        else:
266
267
            raise KeyError(
                "unsupported random key '" + str(random_type) + "'.")
csongor's avatar
csongor committed
268

269
        return random_arguments
csongor's avatar
csongor committed
270

271
272
    # ---Powerspectral methods---

Theo Steininger's avatar
Theo Steininger committed
273
    def power_analyze(self, spaces=None, logarithmic=False, nbin=None,
274
                      binbounds=None, keep_phase_information=False):
Theo Steininger's avatar
Theo Steininger committed
275
        """ Computes the square root power spectrum for a subspace of `self`.
Theo Steininger's avatar
Theo Steininger committed
276

Theo Steininger's avatar
Theo Steininger committed
277
278
279
        Creates a PowerSpace for the space addressed by `spaces` with the given
        binning and computes the power spectrum as a Field over this
        PowerSpace. This can only be done if the subspace to  be analyzed is a
280
        harmonic space. The resulting field has the same units as the initial
Theo Steininger's avatar
Theo Steininger committed
281
        field, corresponding to the square root of the power spectrum.
282
283
284

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
285
286
287
288
289
        spaces : int *optional*
            The subspace for which the powerspectrum shall be computed
            (default : None).
        logarithmic : boolean *optional*
            True if the output PowerSpace should use logarithmic binning.
290
            {default : False}
Theo Steininger's avatar
Theo Steininger committed
291
292
293
294
295
296
297
        nbin : int *optional*
            The number of bins the resulting PowerSpace shall have
            (default : None).
            if nbin==None : maximum number of bins is used
        binbounds : array-like *optional*
            Inner bounds of the bins (default : None).
            if binbounds==None : bins are inferred. Overwrites nbins and log
298
299
300
301
302
303
304
305
306
307
        keep_phase_information : boolean, *optional*
            If False, return a real-valued result containing the power spectrum
            of the input Field.
            If True, return a complex-valued result whose real component
            contains the power spectrum computed from the real part of the
            input Field, and whose imaginary component contains the power
            spectrum computed from the imaginary part of the input Field.
            The absolute value of this result should be identical to the output
            of power_analyze with keep_phase_information=False.
            (default : False).
Theo Steininger's avatar
Theo Steininger committed
308

309
310
311
312
        Raise
        -----
        ValueError
            Raised if
Theo Steininger's avatar
Theo Steininger committed
313
314
                *len(domain) is != 1 when spaces==None
                *len(spaces) is != 1 if not None
315
                *the analyzed space is not harmonic
Theo Steininger's avatar
Theo Steininger committed
316

317
318
        Returns
        -------
Theo Steininger's avatar
Theo Steininger committed
319
        out : Field
320
321
322
323
324
325
            The output object. It's domain is a PowerSpace and it contains
            the power spectrum of 'self's field.

        See Also
        --------
        power_synthesize, PowerSpace
Theo Steininger's avatar
Theo Steininger committed
326

327
        """
Theo Steininger's avatar
Theo Steininger committed
328

Theo Steininger's avatar
Theo Steininger committed
329
        # check if all spaces in `self.domain` are either harmonic or
330
331
332
        # power_space instances
        for sp in self.domain:
            if not sp.harmonic and not isinstance(sp, PowerSpace):
Theo Steininger's avatar
Theo Steininger committed
333
                self.logger.info(
334
                    "Field has a space in `domain` which is neither "
335
336
337
                    "harmonic nor a PowerSpace.")

        # check if the `spaces` input is valid
338
339
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
        if spaces is None:
340
            spaces = range(len(self.domain))
341
342

        if len(spaces) == 0:
343
344
            raise ValueError(
                "No space for analysis specified.")
345

346
347
348
349
350
351
352
353
354
355
356
357
358
        if keep_phase_information:
            parts_val = self._hermitian_decomposition(
                                              domain=self.domain,
                                              val=self.val,
                                              spaces=spaces,
                                              domain_axes=self.domain_axes,
                                              preserve_gaussian_variance=False)
            parts = [self.copy_empty().set_val(part_val, copy=False)
                     for part_val in parts_val]
        else:
            parts = [self]

        parts = [abs(part)**2 for part in parts]
359
360

        for space_index in spaces:
361
362
            parts = [self._single_power_analyze(
                                work_field=part,
363
364
365
                                space_index=space_index,
                                logarithmic=logarithmic,
                                nbin=nbin,
366
367
                                binbounds=binbounds)
                     for part in parts]
368

369
370
371
372
373
374
        if keep_phase_information:
            result_field = parts[0] + 1j*parts[1]
        else:
            result_field = parts[0]

        return result_field
375
376
377

    @classmethod
    def _single_power_analyze(cls, work_field, space_index, logarithmic, nbin,
378
                              binbounds):
379

380
        if not work_field.domain[space_index].harmonic:
381
382
            raise ValueError(
                "The analyzed space must be harmonic.")
383

384
385
386
387
388
389
        # Create the target PowerSpace instance:
        # If the associated signal-space field was real, we extract the
        # hermitian and anti-hermitian parts of `self` and put them
        # into the real and imaginary parts of the power spectrum.
        # If it was complex, all the power is put into a real power spectrum.

390
        distribution_strategy = \
391
392
            work_field.val.get_axes_local_distribution_strategy(
                work_field.domain_axes[space_index])
393

394
        harmonic_domain = work_field.domain[space_index]
395
        power_domain = PowerSpace(harmonic_partner=harmonic_domain,
396
                                  distribution_strategy=distribution_strategy,
Theo Steininger's avatar
Theo Steininger committed
397
398
                                  logarithmic=logarithmic, nbin=nbin,
                                  binbounds=binbounds)
399

400
        # extract pindex and rho from power_domain
401
402
        pindex = power_domain.pindex
        rho = power_domain.rho
403

404
405
406
407
408
        power_spectrum = cls._calculate_power_spectrum(
                                field_val=work_field.val,
                                pindex=pindex,
                                rho=rho,
                                axes=work_field.domain_axes[space_index])
409
410

        # create the result field and put power_spectrum into it
411
        result_domain = list(work_field.domain)
412
        result_domain[space_index] = power_domain
413
        result_dtype = power_spectrum.dtype
414

415
        result_field = work_field.copy_empty(
416
                   domain=result_domain,
417
                   dtype=result_dtype,
418
                   distribution_strategy=power_spectrum.distribution_strategy)
419
420
421
422
        result_field.set_val(new_val=power_spectrum, copy=False)

        return result_field

423
424
    @classmethod
    def _calculate_power_spectrum(cls, field_val, pindex, rho, axes=None):
425
426

        if axes is not None:
427
428
429
430
431
432
            pindex = cls._shape_up_pindex(
                            pindex=pindex,
                            target_shape=field_val.shape,
                            target_strategy=field_val.distribution_strategy,
                            axes=axes)
        power_spectrum = pindex.bincount(weights=field_val,
433
434
435
436
437
438
439
440
441
                                         axis=axes)
        if axes is not None:
            new_rho_shape = [1, ] * len(power_spectrum.shape)
            new_rho_shape[axes[0]] = len(rho)
            rho = rho.reshape(new_rho_shape)
        power_spectrum /= rho

        return power_spectrum

442
443
    @staticmethod
    def _shape_up_pindex(pindex, target_shape, target_strategy, axes):
444
445
        if pindex.distribution_strategy not in \
                DISTRIBUTION_STRATEGIES['global']:
446
            raise ValueError("pindex's distribution strategy must be "
447
448
449
450
451
452
                             "global-type")

        if pindex.distribution_strategy in DISTRIBUTION_STRATEGIES['slicing']:
            if ((0 not in axes) or
                    (target_strategy is not pindex.distribution_strategy)):
                raise ValueError(
453
                    "A slicing distributor shall not be reshaped to "
454
455
456
457
458
459
460
461
462
463
464
465
466
                    "something non-sliced.")

        semiscaled_shape = [1, ] * len(target_shape)
        for i in axes:
            semiscaled_shape[i] = target_shape[i]
        local_data = pindex.get_local_data(copy=False)
        semiscaled_local_data = local_data.reshape(semiscaled_shape)
        result_obj = pindex.copy_empty(global_shape=target_shape,
                                       distribution_strategy=target_strategy)
        result_obj.set_full_data(semiscaled_local_data, copy=False)

        return result_obj

467
468
    def power_synthesize(self, spaces=None, real_power=True, real_signal=True,
                         mean=None, std=None):
Theo Steininger's avatar
Theo Steininger committed
469
        """ Yields a sampled field with `self`**2 as its power spectrum.
Theo Steininger's avatar
Theo Steininger committed
470

Theo Steininger's avatar
Theo Steininger committed
471
472
        This method draws a Gaussian random field in the harmonic partner
        domain of this fields domains, using this field as power spectrum.
Theo Steininger's avatar
Theo Steininger committed
473

474
475
476
        Parameters
        ----------
        spaces : {tuple, int, None} *optional*
Theo Steininger's avatar
Theo Steininger committed
477
478
479
            Specifies the subspace containing all the PowerSpaces which
            should be converted (default : None).
            if spaces==None : Tries to convert the whole domain.
480
        real_power : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
481
482
            Determines whether the power spectrum is treated as intrinsically
            real or complex (default : True).
483
        real_signal : boolean *optional*
Theo Steininger's avatar
Theo Steininger committed
484
485
486
487
488
489
            True will result in a purely real signal-space field
            (default : True).
        mean : float *optional*
            The mean of the Gaussian noise field which is used for the Field
            synthetization (default : None).
            if mean==None : mean will be set to 0
490
        std : float *optional*
Theo Steininger's avatar
Theo Steininger committed
491
492
493
            The standard deviation of the Gaussian noise field which is used
            for the Field synthetization (default : None).
            if std==None : std will be set to 1
Theo Steininger's avatar
Theo Steininger committed
494

495
496
497
498
        Returns
        -------
        out : Field
            The output object. A random field created with the power spectrum
Theo Steininger's avatar
Theo Steininger committed
499
            stored in the `spaces` in `self`.
500

Theo Steininger's avatar
Theo Steininger committed
501
502
503
504
505
506
        Notes
        -----
        For this the spaces specified by `spaces` must be a PowerSpace.
        This expects this field to be the square root of a power spectrum, i.e.
        to have the unit of the field to be sampled.

507
508
509
        See Also
        --------
        power_analyze
Theo Steininger's avatar
Theo Steininger committed
510
511
512
513
514

        Raises
        ------
        ValueError : If domain specified by `spaces` is not a PowerSpace.

515
        """
Theo Steininger's avatar
Theo Steininger committed
516

517
518
519
        # check if the `spaces` input is valid
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))

Theo Steininger's avatar
Theo Steininger committed
520
521
522
        if spaces is None:
            spaces = range(len(self.domain))

523
524
525
526
527
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
            if not isinstance(power_space, PowerSpace):
                raise ValueError("A PowerSpace is needed for field "
                                 "synthetization.")
528
529
530

        # create the result domain
        result_domain = list(self.domain)
531
532
        for power_space_index in spaces:
            power_space = self.domain[power_space_index]
533
            harmonic_domain = power_space.harmonic_partner
534
            result_domain[power_space_index] = harmonic_domain
535
536
537

        # create random samples: one or two, depending on whether the
        # power spectrum is real or complex
538
        if real_power:
539
            result_list = [None]
540
541
        else:
            result_list = [None, None]
542

543
544
        result_list = [self.__class__.from_random(
                             'normal',
545
546
547
                             mean=mean,
                             std=std,
                             domain=result_domain,
548
                             dtype=np.complex,
549
                             distribution_strategy=self.distribution_strategy)
550
551
552
553
554
555
                       for x in result_list]

        # from now on extract the values from the random fields for further
        # processing without killing the fields.
        # if the signal-space field should be real, hermitianize the field
        # components
556
557

        spec = self.val.get_full_data()
558
559
        spec = np.sqrt(spec)

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
        for power_space_index in spaces:
            spec = self._spec_to_rescaler(spec, result_list, power_space_index)
        local_rescaler = spec

        result_val_list = [x.val for x in result_list]

        # apply the rescaler to the random fields
        result_val_list[0].apply_scalar_function(
                                            lambda x: x * local_rescaler.real,
                                            inplace=True)

        if not real_power:
            result_val_list[1].apply_scalar_function(
                                            lambda x: x * local_rescaler.imag,
                                            inplace=True)

576
        if real_signal:
577
            result_val_list = [self._hermitian_decomposition(
578
579
580
581
582
                                            result_domain,
                                            result_val,
                                            spaces,
                                            result_list[0].domain_axes,
                                            preserve_gaussian_variance=True)[0]
583
                               for result_val in result_val_list]
584
585
586
587
588
589
590

        # store the result into the fields
        [x.set_val(new_val=y, copy=False) for x, y in
            zip(result_list, result_val_list)]

        if real_power:
            result = result_list[0]
591
        else:
592
593
594
595
            result = result_list[0] + 1j*result_list[1]

        return result

596
    @staticmethod
597
598
    def _hermitian_decomposition(domain, val, spaces, domain_axes,
                                 preserve_gaussian_variance=False):
599
600
        # hermitianize for the first space
        (h, a) = domain[spaces[0]].hermitian_decomposition(
601
                       val,
602
                       domain_axes[spaces[0]])
603
        # hermitianize all remaining spaces using the iterative formula
604
        for space in spaces[1:]:
605
606
            (hh, ha) = domain[space].hermitian_decomposition(
                                              h,
607
                                              domain_axes[space])
608
609
            (ah, aa) = domain[space].hermitian_decomposition(
                                              a,
610
                                              domain_axes[space])
611
            c = (hh - ha - ah + aa).conjugate()
612
613
614
            full = (hh + ha + ah + aa)
            h = (full + c)/2.
            a = (full - c)/2.
615
616

        # correct variance
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        if preserve_gaussian_variance:
            h *= np.sqrt(2)
            a *= np.sqrt(2)

            if not issubclass(val.dtype.type, np.complexfloating):
                # in principle one must not correct the variance for the fixed
                # points of the hermitianization. However, for a complex field
                # the input field loses half of its power at its fixed points
                # in the `hermitian` part. Hence, here a factor of sqrt(2) is
                # also necessary!
                # => The hermitianization can be done on a space level since
                # either nothing must be done (LMSpace) or ALL points need a
                # factor of sqrt(2)
                # => use the preserve_gaussian_variance flag in the
                # hermitian_decomposition method above.

                # This code is for educational purposes:
                fixed_points = [domain[i].hermitian_fixed_points()
                                for i in spaces]
                fixed_points = [[fp] if fp is None else fp
                                for fp in fixed_points]

                for product_point in itertools.product(*fixed_points):
                    slice_object = np.array((slice(None), )*len(val.shape),
                                            dtype=np.object)
                    for i, sp in enumerate(spaces):
                        point_component = product_point[i]
                        if point_component is None:
                            point_component = slice(None)
                        slice_object[list(domain_axes[sp])] = point_component

                    slice_object = tuple(slice_object)
                    h[slice_object] /= np.sqrt(2)
                    a[slice_object] /= np.sqrt(2)
651
652
        return (h, a)

653
654
    def _spec_to_rescaler(self, spec, result_list, power_space_index):
        power_space = self.domain[power_space_index]
655
656
657

        # weight the random fields with the power spectrum
        # therefore get the pindex from the power space
658
        pindex = power_space.pindex
659
660
661
662
663
664
665
        # take the local data from pindex. This data must be compatible to the
        # local data of the field given the slice of the PowerSpace
        local_distribution_strategy = \
            result_list[0].val.get_axes_local_distribution_strategy(
                result_list[0].domain_axes[power_space_index])

        if pindex.distribution_strategy is not local_distribution_strategy:
666
            self.logger.warn(
Martin Reinecke's avatar
Martin Reinecke committed
667
                "The distribution_strategy of pindex does not fit the "
668
669
670
671
672
673
674
                "slice_local distribution strategy of the synthesized field.")

        # Now use numpy advanced indexing in order to put the entries of the
        # power spectrum into the appropriate places of the pindex array.
        # Do this for every 'pindex-slice' in parallel using the 'slice(None)'s
        local_pindex = pindex.get_local_data(copy=False)

675
676
677
678
679
        local_blow_up = [slice(None)]*len(spec.shape)
        # it is important to count from behind, since spec potentially grows
        # with every iteration
        index = self.domain_axes[power_space_index][0]-len(self.shape)
        local_blow_up[index] = local_pindex
680
        # here, the power_spectrum is distributed into the new shape
681
682
        local_rescaler = spec[local_blow_up]
        return local_rescaler
683

Theo Steininger's avatar
Theo Steininger committed
684
    # ---Properties---
685

Theo Steininger's avatar
Theo Steininger committed
686
    def set_val(self, new_val=None, copy=False):
Theo Steininger's avatar
Theo Steininger committed
687
        """ Sets the fields distributed_data_object.
688
689
690

        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
691
        new_val : scalar, array-like, Field, None *optional*
692
693
            The values to be stored in the field.
            {default : None}
Theo Steininger's avatar
Theo Steininger committed
694

695
        copy : boolean, *optional*
Theo Steininger's avatar
Theo Steininger committed
696
697
            If False, Field tries to not copy the input data but use it
            directly.
698
699
700
701
702
703
            {default : False}
        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
704

705
706
        new_val = self.cast(new_val)
        if copy:
Theo Steininger's avatar
Theo Steininger committed
707
708
            new_val = new_val.copy()
        self._val = new_val
709
        return self
csongor's avatar
csongor committed
710

711
    def get_val(self, copy=False):
Theo Steininger's avatar
Theo Steininger committed
712
        """ Returns the distributed_data_object associated with this Field.
713
714
715
716

        Parameters
        ----------
        copy : boolean
Theo Steininger's avatar
Theo Steininger committed
717
718
            If true, a copy of the Field's underlying distributed_data_object
            is returned.
Theo Steininger's avatar
Theo Steininger committed
719

720
721
722
723
724
725
726
727
728
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        val

        """
Theo Steininger's avatar
Theo Steininger committed
729

730
731
732
        if self._val is None:
            self.set_val(None)

733
        if copy:
Theo Steininger's avatar
Theo Steininger committed
734
            return self._val.copy()
735
        else:
Theo Steininger's avatar
Theo Steininger committed
736
            return self._val
csongor's avatar
csongor committed
737

Theo Steininger's avatar
Theo Steininger committed
738
739
    @property
    def val(self):
Theo Steininger's avatar
Theo Steininger committed
740
        """ Returns the distributed_data_object associated with this Field.
Theo Steininger's avatar
Theo Steininger committed
741

742
743
744
745
746
747
748
749
750
        Returns
        -------
        out : distributed_data_object

        See Also
        --------
        get_val

        """
Theo Steininger's avatar
Theo Steininger committed
751

752
        return self.get_val(copy=False)
csongor's avatar
csongor committed
753

Theo Steininger's avatar
Theo Steininger committed
754
755
    @val.setter
    def val(self, new_val):
756
        self.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
757

758
759
    @property
    def shape(self):
Theo Steininger's avatar
Theo Steininger committed
760
        """ Returns the total shape of the Field's data array.
Theo Steininger's avatar
Theo Steininger committed
761

762
763
764
765
766
767
768
769
770
771
772
        Returns
        -------
        out : tuple
            The output object. The tuple contains the dimansions of the spaces
            in domain.

        See Also
        --------
        dim

        """
Theo Steininger's avatar
Theo Steininger committed
773

774
        shape_tuple = tuple(sp.shape for sp in self.domain)
775
776
777
778
        try:
            global_shape = reduce(lambda x, y: x + y, shape_tuple)
        except TypeError:
            global_shape = ()
csongor's avatar
csongor committed
779

780
        return global_shape
csongor's avatar
csongor committed
781

782
783
    @property
    def dim(self):
Theo Steininger's avatar
Theo Steininger committed
784
        """ Returns the total number of pixel-dimensions the field has.
Theo Steininger's avatar
Theo Steininger committed
785

Theo Steininger's avatar
Theo Steininger committed
786
        Effectively, all values from shape are multiplied.
Theo Steininger's avatar
Theo Steininger committed
787

788
789
790
791
792
793
794
795
796
797
        Returns
        -------
        out : int
            The dimension of the Field.

        See Also
        --------
        shape

        """
Theo Steininger's avatar
Theo Steininger committed
798

799
        dim_tuple = tuple(sp.dim for sp in self.domain)
Theo Steininger's avatar
Theo Steininger committed
800
801
802
803
        try:
            return reduce(lambda x, y: x * y, dim_tuple)
        except TypeError:
            return 0
csongor's avatar
csongor committed
804

805
806
    @property
    def dof(self):
Theo Steininger's avatar
Theo Steininger committed
807
808
809
810
811
812
        """ Returns the total number of degrees of freedom the Field has. For
        real Fields this is equal to `self.dim`. For complex Fields it is
        2*`self.dim`.

        """

Theo Steininger's avatar
Theo Steininger committed
813
814
815
816
817
818
819
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof *= 2
        return dof

    @property
    def total_volume(self):
Theo Steininger's avatar
Theo Steininger committed
820
821
822
        """ Returns the total volume of all spaces in the domain.
        """

Theo Steininger's avatar
Theo Steininger committed
823
        volume_tuple = tuple(sp.total_volume for sp in self.domain)
824
        try:
Theo Steininger's avatar
Theo Steininger committed
825
            return reduce(lambda x, y: x * y, volume_tuple)
826
        except TypeError:
Theo Steininger's avatar
Theo Steininger committed
827
            return 0.
828

Theo Steininger's avatar
Theo Steininger committed
829
    # ---Special unary/binary operations---
830

csongor's avatar
csongor committed
831
    def cast(self, x=None, dtype=None):
Theo Steininger's avatar
Theo Steininger committed
832
        """ Transforms x to a d2o with the correct dtype and shape.
Theo Steininger's avatar
Theo Steininger committed
833

834
835
        Parameters
        ----------
Theo Steininger's avatar
Theo Steininger committed
836
        x : scalar, d2o, Field, array_like
837
838
            The input that shall be casted on a d2o of the same shape like the
            domain.
Theo Steininger's avatar
Theo Steininger committed
839

840
        dtype : type
Theo Steininger's avatar
Theo Steininger committed
841
842
            The datatype the output shall have. This can be used to override
            the fields dtype.
Theo Steininger's avatar
Theo Steininger committed
843

844
845
846
847
848
849
850
851
852
853
        Returns
        -------
        out : distributed_data_object
            The output object.

        See Also
        --------
        _actual_cast

        """
csongor's avatar
csongor committed
854
855
        if dtype is None:
            dtype = self.dtype
856
857
        else:
            dtype = np.dtype(dtype)
858

859
860
        casted_x = x

861
        for ind, sp in enumerate(self.domain):
862
            casted_x = sp.pre_cast(casted_x,
863
864
865
                                   axes=self.domain_axes[ind])

        casted_x = self._actual_cast(casted_x, dtype=dtype)
866
867

        for ind, sp in enumerate(self.domain):
868
869
            casted_x = sp.post_cast(casted_x,
                                    axes=self.domain_axes[ind])
870

871
        return casted_x
csongor's avatar
csongor committed
872

Theo Steininger's avatar
Theo Steininger committed
873
    def _actual_cast(self, x, dtype=None):
874
        if isinstance(x, Field):
csongor's avatar
csongor committed
875
876
877
878
879
            x = x.get_val()

        if dtype is None:
            dtype = self.dtype

880
        return_x = distributed_data_object(
881
882
883
                            global_shape=self.shape,
                            dtype=dtype,
                            distribution_strategy=self.distribution_strategy)
884
885
        return_x.set_full_data(x, copy=False)
        return return_x
Theo Steininger's avatar
Theo Steininger committed
886

887
    def copy(self, domain=None, dtype=None, distribution_strategy=None):
888
        """ Returns a full copy of the Field.
Theo Steininger's avatar
Theo Steininger committed
889

890
891
892
893
894
895
896
897
898
        If no keyword arguments are given, the returned object will be an
        identical copy of the original Field. By explicit specification one is
        able to define the domain, the dtype and the distribution_strategy of
        the returned Field.

        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
899

900
901
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
902

903
        distribution_strategy : all supported distribution strategies
Theo Steininger's avatar
Theo Steininger committed
904
905
            The new distribution strategy the Field shall have.

906
907
908
909
910
911
912
913
914
915
        Returns
        -------
        out : Field
            The output object. An identical copy of 'self'.

        See Also
        --------
        copy_empty

        """
Theo Steininger's avatar
Theo Steininger committed
916

Theo Steininger's avatar
Theo Steininger committed
917
        copied_val = self.get_val(copy=True)
918
919
920
921
        new_field = self.copy_empty(
                                domain=domain,
                                dtype=dtype,
                                distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
922
923
        new_field.set_val(new_val=copied_val, copy=False)
        return new_field
csongor's avatar
csongor committed
924

925
    def copy_empty(self, domain=None, dtype=None, distribution_strategy=None):
926
927
928
        """ Returns an empty copy of the Field.

        If no keyword arguments are given, the returned object will be an
Theo Steininger's avatar
Theo Steininger committed
929
930
931
932
933
        identical copy of the original Field. The memory for the data array
        is only allocated but not actively set to any value
        (c.f. numpy.ndarray.copy_empty). By explicit specification one is able
        to change the domain, the dtype and the distribution_strategy of the
        returned Field.
Theo Steininger's avatar
Theo Steininger committed
934

935
936
937
938
        Parameters
        ----------
        domain : DomainObject
            The new domain the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
939

940
941
        dtype : type
            The new dtype the Field shall have.
Theo Steininger's avatar
Theo Steininger committed
942

Theo Steininger's avatar
Theo Steininger committed
943
        distribution_strategy : string, all supported distribution strategies
944
            The distribution strategy the new Field should have.
Theo Steininger's avatar
Theo Steininger committed
945

946
947
948
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
949
            The output object.
950
951
952
953
954
955

        See Also
        --------
        copy

        """
Theo Steininger's avatar
Theo Steininger committed
956

Theo Steininger's avatar
Theo Steininger committed
957
958
        if domain is None:
            domain = self.domain
csongor's avatar
csongor committed
959
        else:
Theo Steininger's avatar
Theo Steininger committed
960
            domain = self._parse_domain(domain)
csongor's avatar
csongor committed
961

Theo Steininger's avatar
Theo Steininger committed
962
963
964
965
        if dtype is None:
            dtype = self.dtype
        else:
            dtype = np.dtype(dtype)
csongor's avatar
csongor committed
966

967
968
        if distribution_strategy is None:
            distribution_strategy = self.distribution_strategy
csongor's avatar
csongor committed
969

Theo Steininger's avatar
Theo Steininger committed
970
971
972
973
974
975
976
977
978
979
        fast_copyable = True
        try:
            for i in xrange(len(self.domain)):
                if self.domain[i] is not domain[i]:
                    fast_copyable = False
                    break
        except IndexError:
            fast_copyable = False

        if (fast_copyable and dtype == self.dtype and
980
                distribution_strategy == self.distribution_strategy):
Theo Steininger's avatar
Theo Steininger committed
981
982
983
984
            new_field = self._fast_copy_empty()
        else:
            new_field = Field(domain=domain,
                              dtype=dtype,
985
                              distribution_strategy=distribution_strategy)
Theo Steininger's avatar
Theo Steininger committed
986
        return new_field
csongor's avatar
csongor committed
987

Theo Steininger's avatar
Theo Steininger committed
988
989
990
991
992
993
994
    def _fast_copy_empty(self):
        # make an empty field
        new_field = EmptyField()
        # repair its class
        new_field.__class__ = self.__class__
        # copy domain, codomain and val
        for key, value in self.__dict__.items():
995
            if key != '_val':
Theo Steininger's avatar
Theo Steininger committed
996
997
998
999
1000
1001
                new_field.__dict__[key] = value
            else:
                new_field.__dict__[key] = self.val.copy_empty()
        return new_field

    def weight(self, power=1, inplace=False, spaces=None):
Theo Steininger's avatar
Theo Steininger committed
1002
        """ Weights the pixels of `self` with their invidual pixel-volume.
1003
1004
1005
1006

        Parameters
        ----------
        power : number
Theo Steininger's avatar
Theo Steininger committed
1007
            The pixels get weighted with the volume-factor**power.
Theo Steininger's avatar
Theo Steininger committed
1008

1009
        inplace : boolean
Theo Steininger's avatar
Theo Steininger committed
1010
1011
            If True, `self` will be weighted and returned. Otherwise, a copy
            is made.
Theo Steininger's avatar
Theo Steininger committed
1012

Theo Steininger's avatar
Theo Steininger committed
1013
1014
        spaces : tuple of ints
            Determines on which subspace the operation takes place.
Theo Steininger's avatar
Theo Steininger committed
1015

1016
1017
1018
        Returns
        -------
        out : Field
Theo Steininger's avatar
Theo Steininger committed
1019
            The weighted field.
1020
1021

        """
1022
        if inplace:
csongor's avatar
csongor committed
1023
1024
1025
1026
            new_field = self
        else:
            new_field = self.copy_empty()

1027
        new_val = self.get_val(copy=False)
csongor's avatar
csongor committed
1028

1029
        spaces = utilities.cast_axis_to_tuple(spaces, len(self.domain))
csongor's avatar
csongor committed
1030
        if spaces is None:
Theo Steininger's avatar
Theo Steininger committed
1031
            spaces = range(len(self.domain))
csongor's avatar
csongor committed
1032

1033
        for ind, sp in enumerate(self.domain):
Theo Steininger's avatar
Theo Steininger committed
1034
1035
1036
1037
1038
            if ind in spaces:
                new_val = sp.weight(new_val,
                                    power=power,
                                    axes=self.domain_axes[ind],
                                    inplace=inplace)
1039
1040

        new_field.set_val(new_val=new_val, copy=False)
csongor's avatar
csongor committed
1041
1042
        return new_field

Martin Reinecke's avatar
Martin Reinecke committed
1043
    def vdot(self, x=None, spaces=None, bare=False):
Theo Steininger's avatar
Theo Steininger committed
1044
        """ Computes the volume-factor-aware dot product of 'self' with x.
Theo Steininger's avatar
Theo Steininger committed
1045

1046
1047
1048
        Parameters
        ----------
        x : Field
Theo Steininger's avatar
Theo Steininger committed
1049
            The domain of x must contain `self.domain`
Theo Steininger's avatar
Theo Steininger committed
1050