cartesian_wiener_filter.py 5.89 KB
Newer Older
Theo Steininger's avatar
Theo Steininger committed
1
2
3
4
# -*- coding: utf-8 -*-

import numpy as np
import nifty as ift
Theo Steininger's avatar
Theo Steininger committed
5
from nifty import plotting
Theo Steininger's avatar
Theo Steininger committed
6
7
8
9

from keepers import Repository

if __name__ == "__main__":
Martin Reinecke's avatar
Martin Reinecke committed
10
    ift.nifty_configuration['default_distribution_strategy'] = 'fftw'
Theo Steininger's avatar
Theo Steininger committed
11

Martin Reinecke's avatar
Martin Reinecke committed
12
    signal_to_noise = 1.5 # The signal to noise ratio
Theo Steininger's avatar
Theo Steininger committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32


    # Setting up parameters    |\label{code:wf_parameters}|
    correlation_length_1 = 1. # Typical distance over which the field is correlated
    field_variance_1 = 2. # Variance of field in position space

    response_sigma_1 = 0.05 # Smoothing length of response (in same unit as L)

    def power_spectrum_1(k): # note: field_variance**2 = a*k_0/4.
        a = 4 * correlation_length_1 * field_variance_1**2
        return a / (1 + k * correlation_length_1) ** 4.

    # Setting up the geometry |\label{code:wf_geometry}|
    L_1 = 2. # Total side-length of the domain
    N_pixels_1 = 512 # Grid resolution (pixels per axis)

    signal_space_1 = ift.RGSpace([N_pixels_1], distances=L_1/N_pixels_1)
    harmonic_space_1 = ift.FFTOperator.get_default_codomain(signal_space_1)
    fft_1 = ift.FFTOperator(harmonic_space_1, target=signal_space_1,
                            domain_dtype=np.complex, target_dtype=np.complex)
Martin Reinecke's avatar
Martin Reinecke committed
33
    power_space_1 = ift.PowerSpace(harmonic_space_1)
Theo Steininger's avatar
Theo Steininger committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

    mock_power_1 = ift.Field(power_space_1, val=power_spectrum_1,
                             distribution_strategy='not')



    # Setting up parameters    |\label{code:wf_parameters}|
    correlation_length_2 = 1. # Typical distance over which the field is correlated
    field_variance_2 = 2. # Variance of field in position space

    response_sigma_2 = 0.01 # Smoothing length of response (in same unit as L)

    def power_spectrum_2(k): # note: field_variance**2 = a*k_0/4.
        a = 4 * correlation_length_2 * field_variance_2**2
        return a / (1 + k * correlation_length_2) ** 2.5

    # Setting up the geometry |\label{code:wf_geometry}|
    L_2 = 2. # Total side-length of the domain
    N_pixels_2 = 512 # Grid resolution (pixels per axis)

    signal_space_2 = ift.RGSpace([N_pixels_2], distances=L_2/N_pixels_2)
    harmonic_space_2 = ift.FFTOperator.get_default_codomain(signal_space_2)
    fft_2 = ift.FFTOperator(harmonic_space_2, target=signal_space_2,
                            domain_dtype=np.complex, target_dtype=np.complex)
Theo Steininger's avatar
Theo Steininger committed
58
    power_space_2 = ift.PowerSpace(harmonic_space_2, distribution_strategy='not')
Theo Steininger's avatar
Theo Steininger committed
59
60
61
62
63
64
65
66
67
68
69
70

    mock_power_2 = ift.Field(power_space_2, val=power_spectrum_2,
                         distribution_strategy='not')

    fft = ift.ComposedOperator((fft_1, fft_2))

    mock_power = ift.Field(domain=(power_space_1, power_space_2),
                           val=np.outer(mock_power_1.val.get_full_data(),
                                        mock_power_2.val.get_full_data()),
                                        distribution_strategy='not')

    diagonal = mock_power.power_synthesize(spaces=(0, 1), mean=1, std=0,
Martin Reinecke's avatar
Martin Reinecke committed
71
                                           real_signal=False)**2
Theo Steininger's avatar
Theo Steininger committed
72
73
74
75
76
77

    S = ift.DiagonalOperator(domain=(harmonic_space_1, harmonic_space_2),
                             diagonal=diagonal)


    np.random.seed(10)
Martin Reinecke's avatar
Martin Reinecke committed
78
    mock_signal = fft(mock_power.power_synthesize(real_signal=True))
Theo Steininger's avatar
Theo Steininger committed
79
80
81

    # Setting up a exemplary response
    N1_10 = int(N_pixels_1/10)
Martin Reinecke's avatar
Martin Reinecke committed
82
    mask_1 = ift.Field(signal_space_1, val=1.)
Theo Steininger's avatar
Theo Steininger committed
83
84
85
86
87
88
89
90
91
92
    mask_1.val[N1_10*7:N1_10*9] = 0.

    N2_10 = int(N_pixels_2/10)
    mask_2 = ift.Field(signal_space_2, val=1., distribution_strategy='not')
    mask_2.val[N2_10*7:N2_10*9] = 0.

    R = ift.ResponseOperator((signal_space_1, signal_space_2),
                             sigma=(response_sigma_1, response_sigma_2),
                             exposure=(mask_1, mask_2)) #|\label{code:wf_response}|
    data_domain = R.target
Theo Steininger's avatar
Theo Steininger committed
93
    R_harmonic = ift.ComposedOperator([fft, R], default_spaces=(0, 1, 0, 1))
Theo Steininger's avatar
Theo Steininger committed
94
95
96

    # Setting up the noise covariance and drawing a random noise realization
    N = ift.DiagonalOperator(data_domain, diagonal=mock_signal.var()/signal_to_noise,
Martin Reinecke's avatar
Martin Reinecke committed
97
                             bare=True)
Theo Steininger's avatar
Theo Steininger committed
98
99
    noise = ift.Field.from_random(domain=data_domain, random_type='normal',
                                  std=mock_signal.std()/np.sqrt(signal_to_noise),
Martin Reinecke's avatar
Martin Reinecke committed
100
                                  mean=0)
Theo Steininger's avatar
Theo Steininger committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    data = R(mock_signal) + noise #|\label{code:wf_mock_data}|

    # Wiener filter
    j = R_harmonic.adjoint_times(N.inverse_times(data))
    wiener_curvature = ift.library.WienerFilterCurvature(S=S, N=N, R=R_harmonic)
    wiener_curvature._InvertibleOperatorMixin__inverter.convergence_tolerance = 1e-3

    m_k = wiener_curvature.inverse_times(j) #|\label{code:wf_wiener_filter}|
    m = fft(m_k)

    # Probing the variance
    class Proby(ift.DiagonalProberMixin, ift.Prober): pass
    proby = Proby((signal_space_1, signal_space_2), probe_count=100)
    proby(lambda z: fft(wiener_curvature.inverse_times(fft.inverse_times(z))))
#    sm = SmoothingOperator(signal_space, sigma=0.02)
#    variance = sm(proby.diagonal.weight(-1))
    variance = proby.diagonal.weight(-1)

    repo = Repository('repo_100.h5')
    repo.add(mock_signal, 'mock_signal')
    repo.add(data, 'data')
    repo.add(m, 'm')
    repo.add(variance, 'variance')
    repo.commit()

    plot_space = ift.RGSpace((N_pixels_1, N_pixels_2))
Theo Steininger's avatar
Theo Steininger committed
127
    plotter = plotting.RG2DPlotter(color_map=plotting.colormaps.PlankCmap())
Theo Steininger's avatar
Theo Steininger committed
128
129
130
131
132
    plotter.figure.xaxis = ift.plotting.Axis(label='Pixel Index')
    plotter.figure.yaxis = ift.plotting.Axis(label='Pixel Index')

    plotter.plot.zmin = 0.
    plotter.plot.zmax = 3.
133
    sm = ift.FFTSmoothingOperator(plot_space, sigma=0.03)
Theo Steininger's avatar
Theo Steininger committed
134
    plotter(ift.log(ift.sqrt(sm(ift.Field(plot_space, val=variance.val.real)))), path='uncertainty.html')
Theo Steininger's avatar
Theo Steininger committed
135
136
137
138
139
140
141

    plotter.plot.zmin = np.real(mock_signal.min());
    plotter.plot.zmax = np.real(mock_signal.max());
    plotter(ift.Field(plot_space, val=mock_signal.val.real), path='mock_signal.html')
    plotter(ift.Field(plot_space, val=data.val.get_full_data().real), path = 'data.html')
    plotter(ift.Field(plot_space, val=m.val.real), path = 'map.html')