sugar.py 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
Theo Steininger's avatar
Theo Steininger committed
13
#
Martin Reinecke's avatar
Martin Reinecke committed
14
# Copyright(C) 2013-2018 Max-Planck-Society
Theo Steininger's avatar
Theo Steininger committed
15
16
17
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
18

19
import sys
20

21
import numpy as np
22
23
24
25

from . import dobj, utilities
from .compat import *
from .domain_tuple import DomainTuple
Martin Reinecke's avatar
Martin Reinecke committed
26
from .domains.power_space import PowerSpace
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
27
from .field import Field
28
from .logger import logger
Martin Reinecke's avatar
Martin Reinecke committed
29
30
from .multi_domain import MultiDomain
from .multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
31
from .operators.block_diagonal_operator import BlockDiagonalOperator
Martin Reinecke's avatar
Martin Reinecke committed
32
from .operators.diagonal_operator import DiagonalOperator
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
33
from .operators.distributors import PowerDistributor
34

Martin Reinecke's avatar
step 1    
Martin Reinecke committed
35
36
__all__ = ['PS_field', 'power_analyze', 'create_power_operator',
           'create_harmonic_smoothing_operator', 'from_random',
37
           'full', 'from_global_data', 'from_local_data',
Martin Reinecke's avatar
Martin Reinecke committed
38
           'makeDomain', 'sqrt', 'exp', 'log', 'tanh', 'positive_tanh',
39
40
           'conjugate', 'get_signal_variance', 'makeOp', 'domain_union',
           'get_default_codomain']
41

42

43
def PS_field(pspace, func):
Martin Reinecke's avatar
Martin Reinecke committed
44
45
46
    if not isinstance(pspace, PowerSpace):
        raise TypeError
    data = dobj.from_global_data(func(pspace.k_lengths))
47
    return Field(DomainTuple.make(pspace), data)
Martin Reinecke's avatar
Martin Reinecke committed
48

Martin Reinecke's avatar
Martin Reinecke committed
49

50
51
52
53
54
55
56
57
58
59
60
61
62
def get_signal_variance(spec, space):
    """
    Computes how much a field with a given power spectrum will vary in space

    This is a small helper function that computes how the expected variance
    of a harmonically transformed sample of this power spectrum.

    Parameters
    ---------
    spec: method
        a method that takes one k-value and returns the power spectrum at that
        location
    space: PowerSpace or any harmonic Domain
Martin Reinecke's avatar
Martin Reinecke committed
63
64
65
66
        If this function is given a harmonic domain, it creates the naturally
        binned PowerSpace to that domain.
        The field, for which the signal variance is then computed, is assumed
        to have this PowerSpace as naturally binned PowerSpace
67
68
69
70
    """
    if space.harmonic:
        space = PowerSpace(space)
    if not isinstance(space, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
71
72
        raise ValueError(
            "space must be either a harmonic space or Power space.")
73
74
75
76
77
    field = PS_field(space, spec)
    dist = PowerDistributor(space.harmonic_partner, space)
    k_field = dist(field)
    return k_field.weight(2).sum()

78

79
80
def _single_power_analyze(field, idx, binbounds):
    power_domain = PowerSpace(field.domain[idx], binbounds)
Martin Reinecke's avatar
Martin Reinecke committed
81
82
    pd = PowerDistributor(field.domain, power_domain, idx)
    return pd.adjoint_times(field.weight(1)).weight(-1)  # divides by bin size
83
84


Martin Reinecke's avatar
Martin Reinecke committed
85
86
# MR FIXME: this function is not well suited for analyzing more than one
# subdomain at once, because it allows only one set of binbounds.
87
88
def power_analyze(field, spaces=None, binbounds=None,
                  keep_phase_information=False):
Martin Reinecke's avatar
Martin Reinecke committed
89
    """ Computes the power spectrum for a subspace of `field`.
90
91
92
93

    Creates a PowerSpace for the space addressed by `spaces` with the given
    binning and computes the power spectrum as a Field over this
    PowerSpace. This can only be done if the subspace to  be analyzed is a
Martin Reinecke's avatar
Martin Reinecke committed
94
95
    harmonic space. The resulting field has the same units as the square of the
    initial field.
96
97
98
99
100

    Parameters
    ----------
    field : Field
        The field to be analyzed
Martin Reinecke's avatar
Martin Reinecke committed
101
102
103
    spaces : None or int or tuple of int, optional
        The indices of subdomains for which the power spectrum shall be
        computed.
Martin Reinecke's avatar
Martin Reinecke committed
104
        If None, all subdomains will be converted.
105
        (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
106
    binbounds : None or array-like, optional
107
        Inner bounds of the bins (default : None).
Martin Reinecke's avatar
Martin Reinecke committed
108
109
        if binbounds is None : bins are inferred.
    keep_phase_information : bool, optional
110
111
112
113
114
115
116
117
118
119
120
121
        If False, return a real-valued result containing the power spectrum
        of the input Field.
        If True, return a complex-valued result whose real component
        contains the power spectrum computed from the real part of the
        input Field, and whose imaginary component contains the power
        spectrum computed from the imaginary part of the input Field.
        The absolute value of this result should be identical to the output
        of power_analyze with keep_phase_information=False.
        (default : False).

    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
122
    Field
123
        The output object. Its domain is a PowerSpace and it contains
Martin Reinecke's avatar
Martin Reinecke committed
124
        the power spectrum of `field`.
125
126
127
128
    """

    for sp in field.domain:
        if not sp.harmonic and not isinstance(sp, PowerSpace):
Martin Reinecke's avatar
Martin Reinecke committed
129
130
            logger.warning("WARNING: Field has a space in `domain` which is "
                           "neither harmonic nor a PowerSpace.")
131

132
    spaces = utilities.parse_spaces(spaces, len(field.domain))
133
134
135
136

    if len(spaces) == 0:
        raise ValueError("No space for analysis specified.")

Martin Reinecke's avatar
Martin Reinecke committed
137
    field_real = not utilities.iscomplextype(field.dtype)
138
139
140
    if (not field_real) and keep_phase_information:
        raise ValueError("cannot keep phase from real-valued input Field")

141
142
143
    if keep_phase_information:
        parts = [field.real*field.real, field.imag*field.imag]
    else:
144
145
146
147
        if field_real:
            parts = [field**2]
        else:
            parts = [field.real*field.real + field.imag*field.imag]
148
149

    for space_index in spaces:
Martin Reinecke's avatar
Martin Reinecke committed
150
        parts = [_single_power_analyze(part, space_index, binbounds)
151
152
153
154
155
                 for part in parts]

    return parts[0] + 1j*parts[1] if keep_phase_information else parts[0]


Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
156
def _create_power_field(domain, power_spectrum):
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
157
158
159
160
161
162
163
164
    if not callable(power_spectrum):  # we have a Field living on a PowerSpace
        if not isinstance(power_spectrum, Field):
            raise TypeError("Field object expected")
        if len(power_spectrum.domain) != 1:
            raise ValueError("exactly one domain required")
        if not isinstance(power_spectrum.domain[0], PowerSpace):
            raise TypeError("PowerSpace required")
        power_domain = power_spectrum.domain[0]
165
        fp = power_spectrum
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
166
167
    else:
        power_domain = PowerSpace(domain)
168
        fp = PS_field(power_domain, power_spectrum)
169

Martin Reinecke's avatar
Martin Reinecke committed
170
    return PowerDistributor(domain, power_domain)(fp)
171

172

173
def create_power_operator(domain, power_spectrum, space=None):
Theo Steininger's avatar
Theo Steininger committed
174
    """ Creates a diagonal operator with the given power spectrum.
175

176
    Constructs a diagonal operator that lives over the specified domain.
177

178
179
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
180
    domain : Domain, tuple of Domain or DomainTuple
181
        Domain over which the power operator shall live.
Martin Reinecke's avatar
Martin Reinecke committed
182
183
    power_spectrum : callable or Field
        An object that contains the power spectrum as a function of k.
Martin Reinecke's avatar
Martin Reinecke committed
184
    space : int
Martin Reinecke's avatar
Martin Reinecke committed
185
        the domain index on which the power operator will work
Theo Steininger's avatar
Theo Steininger committed
186

187
188
    Returns
    -------
Martin Reinecke's avatar
Martin Reinecke committed
189
190
    DiagonalOperator
        An operator that implements the given power spectrum.
191
    """
Martin Reinecke's avatar
Martin Reinecke committed
192
    domain = DomainTuple.make(domain)
Martin Reinecke's avatar
Martin Reinecke committed
193
    space = utilities.infer_space(domain, space)
Martin Reinecke's avatar
Martin Reinecke committed
194
195
    field = _create_power_field(domain[space], power_spectrum)
    return DiagonalOperator(field, domain, space)
196

197

198
199
200
201
def create_harmonic_smoothing_operator(domain, space, sigma):
    kfunc = domain[space].get_fft_smoothing_kernel_function(sigma)
    return DiagonalOperator(kfunc(domain[space].get_k_length_array()), domain,
                            space)
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


def full(domain, val):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.full(domain, val)
    return Field.full(domain, val)


def from_random(random_type, domain, dtype=np.float64, **kwargs):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_random(random_type, domain, dtype, **kwargs)
    return Field.from_random(random_type, domain, dtype, **kwargs)


def from_global_data(domain, arr, sum_up=False):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_global_data(domain, arr, sum_up)
    return Field.from_global_data(domain, arr, sum_up)


def from_local_data(domain, arr):
    if isinstance(domain, (dict, MultiDomain)):
        return MultiField.from_local_data(domain, arr)
    return Field.from_local_data(domain, arr)


def makeDomain(domain):
Martin Reinecke's avatar
fixes    
Martin Reinecke committed
229
    if isinstance(domain, (MultiDomain, dict)):
Martin Reinecke's avatar
step 1    
Martin Reinecke committed
230
231
        return MultiDomain.make(domain)
    return DomainTuple.make(domain)
232
233


234
def makeOp(input):
Martin Reinecke's avatar
Martin Reinecke committed
235
236
    if input is None:
        return None
Martin Reinecke's avatar
Martin Reinecke committed
237
238
239
    if isinstance(input, Field):
        return DiagonalOperator(input)
    if isinstance(input, MultiField):
Martin Reinecke's avatar
Martin Reinecke committed
240
        return BlockDiagonalOperator(
Martin Reinecke's avatar
Martin Reinecke committed
241
            input.domain, tuple(makeOp(val) for val in input.values()))
Martin Reinecke's avatar
Martin Reinecke committed
242
243
    raise NotImplementedError

Martin Reinecke's avatar
more    
Martin Reinecke committed
244
245
246

def domain_union(domains):
    if isinstance(domains[0], DomainTuple):
Martin Reinecke's avatar
Martin Reinecke committed
247
        if any(dom != domains[0] for dom in domains[1:]):
Martin Reinecke's avatar
more    
Martin Reinecke committed
248
249
250
251
            raise ValueError("domain mismatch")
        return domains[0]
    return MultiDomain.union(domains)

Martin Reinecke's avatar
more    
Martin Reinecke committed
252

253
254
# Arithmetic functions working on Fields

255

256
257
_current_module = sys.modules[__name__]

Martin Reinecke's avatar
Martin Reinecke committed
258
for f in ["sqrt", "exp", "log", "tanh", "positive_tanh", "conjugate"]:
259
    def func(f):
260
        def func2(x):
Martin Reinecke's avatar
Martin Reinecke committed
261
            from .linearization import Linearization
Martin Reinecke's avatar
Martin Reinecke committed
262
263
            from .operators.operator import Operator
            if isinstance(x, (Field, MultiField, Linearization, Operator)):
Martin Reinecke's avatar
Martin Reinecke committed
264
                return getattr(x, f)()
265
            else:
266
                return getattr(np, f)(x)
267
268
        return func2
    setattr(_current_module, f, func(f))
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

def get_default_codomain(domainoid, space=None):
    """For `RGSpace`, returns the harmonic partner domain.
    For `DomainTuple`, returns a copy of the object in which the domain
    indexed by `space` is substituted by its harmonic partner domain.
    In this case, if `space` is None, it is set to 0 if the `DomainTuple`
    contains exactly one domain.

    Parameters
    ----------
    domain: `RGSpace` or `DomainTuple`
        Domain for which to constuct the default harmonic partner
    space: int
        Optional index of the subdomain to be replaced by its default
        codomain. `domain[space]` must be of class `RGSpace`.
    """
    from .domains.rg_space import RGSpace
    if isinstance(domainoid, RGSpace):
        return domainoid.get_default_codomain()
    if not isinstance(domainoid, DomainTuple):
        raise TypeError(
            'Works only on RGSpaces and DomainTuples containing those')
    space = utilities.infer_space(domainoid, space)
    if not isinstance(domainoid[space], RGSpace):
        raise TypeError("can only codomain RGSpaces")
    ret = [dom for dom in domainoid]
    ret[space] = domainoid[space].get_default_codomain()
    return DomainTuple.make(ret)