iteration_controllers.py 8.45 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.

from __future__ import absolute_import, division, print_function

from ..compat import *
from ..logger import logger
from ..utilities import NiftyMetaBase
Martin Reinecke's avatar
Martin Reinecke committed
24
import numpy as np
Martin Reinecke's avatar
Martin Reinecke committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134


class IterationController(NiftyMetaBase()):
    """The abstract base class for all iteration controllers.
    An iteration controller is an object that monitors the progress of a
    minimization iteration. At the begin of the minimization, its start()
    method is called with the energy object at the initial position.
    Afterwards, its check() method is called during every iteration step with
    the energy object describing the current position.
    Based on that information, the iteration controller has to decide whether
    iteration needs to progress further (in this case it returns CONTINUE), or
    if sufficient convergence has been reached (in this case it returns
    CONVERGED), or if some error has been detected (then it returns ERROR).

    The concrete convergence criteria can be chosen by inheriting from this
    class; the implementer has full flexibility to use whichever criteria are
    appropriate for a particular problem - as long as they can be computed from
    the information passed to the controller during the iteration process.
    """

    CONVERGED, CONTINUE, ERROR = list(range(3))

    def start(self, energy):
        """Starts the iteration.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError

    def check(self, energy):
        """Checks the state of the iteration. Called after every step.

        Parameters
        ----------
        energy : Energy object
           Energy object at the start of the iteration

        Returns
        -------
        status : integer status, can be CONVERGED, CONTINUE or ERROR
        """
        raise NotImplementedError


class GradientNormController(IterationController):
    """An iteration controller checking (mainly) the L2 gradient norm.

    Parameters
    ----------
    tol_abs_gradnorm : float, optional
        If the L2 norm of the energy gradient is below this value, the
        convergence counter will be increased in this iteration.
    tol_rel_gradnorm : float, optional
        If the L2 norm of the energy gradient divided by its initial L2 norm
        is below this value, the convergence counter will be increased in this
        iteration.
    convergence_level : int, default=1
        The number which the convergence counter must reach before the
        iteration is considered to be converged
    iteration_limit : int, optional
        The maximum number of iterations that will be carried out.
    name : str, optional
        if supplied, this string and some diagnostic information will be
        printed after every iteration
    """

    def __init__(self, tol_abs_gradnorm=None, tol_rel_gradnorm=None,
                 convergence_level=1, iteration_limit=None, name=None):
        self._tol_abs_gradnorm = tol_abs_gradnorm
        self._tol_rel_gradnorm = tol_rel_gradnorm
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        if self._tol_rel_gradnorm is not None:
            self._tol_rel_gradnorm_now = self._tol_rel_gradnorm \
                                       * energy.gradient_norm
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        inclvl = False
        if self._tol_abs_gradnorm is not None:
            if energy.gradient_norm <= self._tol_abs_gradnorm:
                inclvl = True
        if self._tol_rel_gradnorm is not None:
            if energy.gradient_norm <= self._tol_rel_gradnorm_now:
                inclvl = True
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} gradnorm={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
                        energy.gradient_norm, self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE


class GradInfNormController(IterationController):
    def __init__(self, tol=None, convergence_level=1, iteration_limit=None,
                 name=None):
        self._tol = tol
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        crit = energy.gradient.norm(np.inf) / abs(energy.value)
        if self._tol is not None and crit <= self._tol:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} crit={:.2E} clvl={}"
                .format(self._name, self._itcount, energy.value,
                        crit, self._ccount))
Martin Reinecke's avatar
Martin Reinecke committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE


class DeltaEnergyController(IterationController):
    def __init__(self, tol_rel_deltaE, convergence_level=1,
                 iteration_limit=None, name=None):
        self._tol_rel_deltaE = tol_rel_deltaE
        self._convergence_level = convergence_level
        self._iteration_limit = iteration_limit
        self._name = name

    def start(self, energy):
        self._itcount = -1
        self._ccount = 0
        self._Eold = 0.
        return self.check(energy)

    def check(self, energy):
        self._itcount += 1

        inclvl = False
        Eval = energy.value
        rel = abs(self._Eold-Eval)/max(abs(self._Eold), abs(Eval))
        if self._itcount > 0:
            if rel < self._tol_rel_deltaE:
                inclvl = True
        self._Eold = Eval
        if inclvl:
            self._ccount += 1
        else:
            self._ccount = max(0, self._ccount-1)

        # report
        if self._name is not None:
            logger.info(
                "{}: Iteration #{} energy={:.6E} reldiff={:.6E} clvl={}"
                .format(self._name, self._itcount, Eval, rel, self._ccount))

        # Are we done?
        if self._iteration_limit is not None:
            if self._itcount >= self._iteration_limit:
                logger.warning(
                    "{} Iteration limit reached. Assuming convergence"
                    .format("" if self._name is None else self._name+": "))
                return self.CONVERGED
        if self._ccount >= self._convergence_level:
            return self.CONVERGED

        return self.CONTINUE