test_jacobian.py 6.47 KB
Newer Older
Philipp Arras's avatar
Philipp Arras committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np
import pytest

Martin Reinecke's avatar
5->6    
Martin Reinecke committed
21
import nifty6 as ift
Philipp Arras's avatar
Philipp Arras committed
22

23
from ..common import list2fixture
Philipp Arras's avatar
Philipp Arras committed
24
25
26
27
28
29
30

pmp = pytest.mark.parametrize
space = list2fixture([
    ift.GLSpace(15),
    ift.RGSpace(64, distances=.789),
    ift.RGSpace([32, 32], distances=.789)
])
Philipp Arras's avatar
Philipp Arras committed
31
32
33
34
35
_h_RG_spaces = [
    ift.RGSpace(7, distances=0.2, harmonic=True),
    ift.RGSpace((12, 46), distances=(.2, .3), harmonic=True)
]
_h_spaces = _h_RG_spaces + [ift.LMSpace(17)]
Philipp Arras's avatar
Philipp Arras committed
36
37
38
39
space1 = space
seed = list2fixture([4, 78, 23])


Philipp Arras's avatar
Philipp Arras committed
40
def testBasics(space, seed):
Martin Reinecke's avatar
Martin Reinecke committed
41
    ift.random.push_sseq_from_seed(seed)
42
    S = ift.ScalingOperator(space, 1.)
Philipp Arras's avatar
Philipp Arras committed
43
    s = S.draw_sample()
Philipp Arras's avatar
Philipp Arras committed
44
    var = ift.Linearization.make_var(s)
45
    model = ift.ScalingOperator(var.target, 6.)
Martin Reinecke's avatar
Martin Reinecke committed
46
    ift.extra.check_jacobian_consistency(model, var.val)
Martin Reinecke's avatar
Martin Reinecke committed
47
    ift.random.pop_sseq()
Philipp Arras's avatar
Philipp Arras committed
48
49
50
51
52


@pmp('type1', ['Variable', 'Constant'])
@pmp('type2', ['Variable'])
def testBinary(type1, type2, space, seed):
Martin Reinecke's avatar
Martin Reinecke committed
53
    ift.random.push_sseq_from_seed(seed)
Philipp Arras's avatar
Philipp Arras committed
54
55
56
    dom1 = ift.MultiDomain.make({'s1': space})
    dom2 = ift.MultiDomain.make({'s2': space})
    dom = ift.MultiDomain.union((dom1, dom2))
57
58
    select_s1 = ift.ducktape(None, dom1, "s1")
    select_s2 = ift.ducktape(None, dom2, "s2")
Philipp Arras's avatar
Philipp Arras committed
59
60
    model = select_s1*select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
61
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
62
63
    model = select_s1 + select_s2
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
64
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
65
66
    model = select_s1.scale(3.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
67
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
68
    model = ift.ScalingOperator(space, 2.456)(select_s1*select_s2)
Philipp Arras's avatar
Philipp Arras committed
69
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
70
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
71
    model = ift.sigmoid(2.456*(select_s1*select_s2))
Philipp Arras's avatar
Philipp Arras committed
72
    pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
73
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
74
75
    pos = ift.from_random("normal", dom)
    model = ift.OuterProduct(pos['s1'], ift.makeDomain(space))
Martin Reinecke's avatar
Martin Reinecke committed
76
    ift.extra.check_jacobian_consistency(model, pos['s2'], ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
77
    model = select_s1**2
78
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
79
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
80
    model = select_s1.clip(-1, 1)
81
    pos = ift.from_random("normal", dom1)
82
83
84
85
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
    f = ift.from_random("normal", space)
    model = select_s1.clip(f-0.1, f+1.)
    pos = ift.from_random("normal", dom1)
Martin Reinecke's avatar
Martin Reinecke committed
86
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Philipp Arras's avatar
Philipp Arras committed
87
88
89
    if isinstance(space, ift.RGSpace):
        model = ift.FFTOperator(space)(select_s1*select_s2)
        pos = ift.from_random("normal", dom)
Martin Reinecke's avatar
Martin Reinecke committed
90
        ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
91
    ift.random.pop_sseq()
Philipp Arras's avatar
Philipp Arras committed
92
93


Rouven Lemmerz's avatar
Rouven Lemmerz committed
94
def testSpecialDistributionOps(space, seed):
Martin Reinecke's avatar
Martin Reinecke committed
95
    ift.random.push_sseq_from_seed(seed)
96
    S = ift.ScalingOperator(space, 1.)
Philipp Arras's avatar
Philipp Arras committed
97
98
99
    pos = S.draw_sample()
    alpha = 1.5
    q = 0.73
Philipp Arras's avatar
Fixups    
Philipp Arras committed
100
    model = ift.InverseGammaOperator(space, alpha, q)
Rouven Lemmerz's avatar
Rouven Lemmerz committed
101
102
103
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
    model = ift.UniformOperator(space, alpha, q)
    ift.extra.check_jacobian_consistency(model, pos, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
104
    ift.random.pop_sseq()
Martin Reinecke's avatar
Martin Reinecke committed
105

106

Philipp Arras's avatar
Philipp Arras committed
107
108
@pmp('neg', [True, False])
def testAdder(space, seed, neg):
Martin Reinecke's avatar
Martin Reinecke committed
109
    ift.random.push_sseq_from_seed(seed)
Philipp Arras's avatar
Philipp Arras committed
110
111
112
113
114
115
116
    S = ift.ScalingOperator(space, 1.)
    f = S.draw_sample()
    f1 = S.draw_sample()
    op = ift.Adder(f1, neg)
    ift.extra.check_jacobian_consistency(op, f)
    op = ift.Adder(f1.val.ravel()[0], neg=neg, domain=space)
    ift.extra.check_jacobian_consistency(op, f)
Martin Reinecke's avatar
Martin Reinecke committed
117
    ift.random.pop_sseq()
Philipp Arras's avatar
Philipp Arras committed
118
119
120
121
122


@pmp('target', [ift.RGSpace(64, distances=.789, harmonic=True),
                ift.RGSpace([32, 32], distances=.789, harmonic=True),
                ift.RGSpace([32, 32, 8], distances=.789, harmonic=True)])
Martin Reinecke's avatar
Martin Reinecke committed
123
124
@pmp('causal', [True, False])
@pmp('minimum_phase', [True, False])
Philipp Frank's avatar
Philipp Frank committed
125
def testDynamicModel(target, causal, minimum_phase, seed):
Martin Reinecke's avatar
Martin Reinecke committed
126
    ift.random.push_sseq_from_seed(seed)
Philipp Frank's avatar
Philipp Frank committed
127
128
129
130
131
132
133
134
135
136
    dct = {
            'target': target,
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'causal': causal,
            'minimum_phase': minimum_phase
            }
    model, _ = ift.dynamic_operator(**dct)
137
    S = ift.ScalingOperator(model.domain, 1.)
Martin Reinecke's avatar
Martin Reinecke committed
138
139
    pos = S.draw_sample()
    # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
140
    ift.extra.check_jacobian_consistency(model, pos, tol=1e-5, ntries=20)
Philipp Frank's avatar
Philipp Frank committed
141
    if len(target.shape) > 1:
142
        dct = {
Philipp Frank's avatar
Philipp Frank committed
143
            'target': target,
144
145
146
147
148
149
150
151
152
153
            'harmonic_padding': None,
            'sm_s0': 3.,
            'sm_x0': 1.,
            'key': 'f',
            'lightcone_key': 'c',
            'sigc': 1.,
            'quant': 5,
            'causal': causal,
            'minimum_phase': minimum_phase
        }
Philipp Frank's avatar
Philipp Frank committed
154
155
156
        dct['lightcone_key'] = 'c'
        dct['sigc'] = 1.
        dct['quant'] = 5
157
        model, _ = ift.dynamic_lightcone_operator(**dct)
158
        S = ift.ScalingOperator(model.domain, 1.)
Martin Reinecke's avatar
Martin Reinecke committed
159
160
        pos = S.draw_sample()
        # FIXME I dont know why smaller tol fails for 3D example
Martin Reinecke's avatar
Martin Reinecke committed
161
        ift.extra.check_jacobian_consistency(
162
            model, pos, tol=1e-5, ntries=20)
Martin Reinecke's avatar
Martin Reinecke committed
163
    ift.random.pop_sseq()
Philipp Arras's avatar
Philipp Arras committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180


@pmp('h_space', _h_spaces)
@pmp('specialbinbounds', [True, False])
@pmp('logarithmic', [True, False])
@pmp('nbin', [3, None])
def testNormalization(h_space, specialbinbounds, logarithmic, nbin):
    if not specialbinbounds and (not logarithmic or nbin is not None):
        return
    if specialbinbounds:
        binbounds = ift.PowerSpace.useful_binbounds(h_space, logarithmic, nbin)
    else:
        binbounds = None
    dom = ift.PowerSpace(h_space, binbounds)
    op = ift.library.correlated_fields._Normalization(dom)
    pos = 0.1*ift.from_random('normal', op.domain)
    ift.extra.check_jacobian_consistency(op, pos)