test_kl.py 2.88 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.

import numpy as np

Martin Reinecke's avatar
5->6    
Martin Reinecke committed
20
import nifty6 as ift
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from numpy.testing import assert_, assert_allclose
import pytest

pmp = pytest.mark.parametrize


@pmp('constants', ([], ['a'], ['b'], ['a', 'b']))
@pmp('point_estimates', ([], ['a'], ['b'], ['a', 'b']))
@pmp('mirror_samples', (True, False))
def test_kl(constants, point_estimates, mirror_samples):
    dom = ift.RGSpace((12,), (2.12))
    op0 = ift.HarmonicSmoothingOperator(dom, 3)
    op = ift.ducktape(dom, None, 'a')*(op0.ducktape('b'))
    lh = ift.GaussianEnergy(domain=op.target) @ op
    ic = ift.GradientNormController(iteration_limit=5)
    h = ift.StandardHamiltonian(lh, ic_samp=ic)
    mean0 = ift.from_random('normal', h.domain)

    nsamps = 2
    kl = ift.MetricGaussianKL(mean0,
                              h,
                              nsamps,
                              constants=constants,
                              point_estimates=point_estimates,
                              mirror_samples=mirror_samples,
                              napprox=0)
    klpure = ift.MetricGaussianKL(mean0,
                                  h,
                                  nsamps,
                                  mirror_samples=mirror_samples,
                                  napprox=0,
                                  _samples=kl.samples)

    # Test value
    assert_allclose(kl.value, klpure.value)

    # Test gradient
    for kk in h.domain.keys():
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
59
        res0 = klpure.gradient[kk].val
60
61
        if kk in constants:
            res0 = 0*res0
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
62
        res1 = kl.gradient[kk].val
63
64
65
66
67
68
69
70
71
        assert_allclose(res0, res1)

    # Test number of samples
    expected_nsamps = 2*nsamps if mirror_samples else nsamps
    assert_(len(kl.samples) == expected_nsamps)

    # Test point_estimates (after drawing samples)
    for kk in point_estimates:
        for ss in kl.samples:
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
72
            ss = ss[kk].val
73
74
75
76
77
78
            assert_allclose(ss, 0*ss)

    # Test constants (after some minimization)
    cg = ift.GradientNormController(iteration_limit=5)
    minimizer = ift.NewtonCG(cg)
    kl, _ = minimizer(kl)
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
79
    diff = (mean0 - kl.position).to_dict()
80
    for kk in constants:
Martin Reinecke's avatar
stage 3    
Martin Reinecke committed
81
        assert_allclose(diff[kk].val, 0*diff[kk].val)