wiener_filter.py 1.6 KB
Newer Older
theos's avatar
theos committed
1 2

from nifty import *
3 4
import plotly.offline as pl
import plotly.graph_objs as go
theos's avatar
theos committed
5 6 7 8 9 10 11 12 13 14

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.rank


if __name__ == "__main__":

    distribution_strategy = 'fftw'

15
    # Setting up the geometry
theos's avatar
theos committed
16
    s_space = RGSpace([512, 512], dtype=np.float64)
theos's avatar
theos committed
17 18 19 20
    fft = FFTOperator(s_space)
    h_space = fft.target[0]
    p_space = PowerSpace(h_space, distribution_strategy=distribution_strategy)

21 22

    # Creating the mock data
theos's avatar
theos committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    pow_spec = (lambda k: 42 / (k + 1) ** 3)

    S = create_power_operator(h_space, power_spectrum=pow_spec,
                              distribution_strategy=distribution_strategy)

    sp = Field(p_space, val=pow_spec,
               distribution_strategy=distribution_strategy)
    sh = sp.power_synthesize(real_signal=True)
    ss = fft.inverse_times(sh)

    R = SmoothingOperator(s_space, sigma=0.1)

    signal_to_noise = 1
    N = DiagonalOperator(s_space, diagonal=ss.var()/signal_to_noise, bare=True)
    n = Field.from_random(domain=s_space,
                          random_type='normal',
                          std=ss.std()/np.sqrt(signal_to_noise),
                          mean=0)

    d = R(ss) + n
43 44

    # Wiener filter
theos's avatar
theos committed
45 46 47 48 49 50 51 52
    j = R.adjoint_times(N.inverse_times(d))
    D = PropagatorOperator(S=S, N=N, R=R)

    m = D(j)

    d_data = d.val.get_full_data().real
    m_data = m.val.get_full_data().real
    ss_data = ss.val.get_full_data().real
53 54 55 56
    if rank == 0:
        pl.plot([go.Heatmap(z=d_data)], filename='data.html')
        pl.plot([go.Heatmap(z=m_data)], filename='map.html')
        pl.plot([go.Heatmap(z=ss_data)], filename='map_orig.html')
theos's avatar
theos committed
57