energy_operators.py 13.7 KB
Newer Older
Martin Reinecke's avatar
Martin Reinecke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
Martin Reinecke's avatar
Martin Reinecke committed
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
Martin Reinecke's avatar
Martin Reinecke committed
17

Philipp Arras's avatar
Philipp Arras committed
18
19
import numpy as np

Philipp Arras's avatar
Philipp Arras committed
20
from .. import utilities
Martin Reinecke's avatar
Martin Reinecke committed
21
from ..domain_tuple import DomainTuple
Philipp Arras's avatar
Philipp Arras committed
22
from ..field import Field
23
from ..multi_field import MultiField
Philipp Arras's avatar
Philipp Arras committed
24
from ..linearization import Linearization
Philipp Arras's avatar
Philipp Arras committed
25
26
from ..sugar import makeDomain, makeOp
from .linear_operator import LinearOperator
Martin Reinecke's avatar
Martin Reinecke committed
27
from .operator import Operator
Martin Reinecke's avatar
fix    
Martin Reinecke committed
28
from .sampling_enabler import SamplingEnabler
Philipp Arras's avatar
Philipp Arras committed
29
from .sandwich_operator import SandwichOperator
30
from .scaling_operator import ScalingOperator
Martin Reinecke's avatar
Martin Reinecke committed
31
from .simple_linear_operators import VdotOperator
Martin Reinecke's avatar
Martin Reinecke committed
32
33
34


class EnergyOperator(Operator):
Philipp Arras's avatar
Philipp Arras committed
35
    """Operator which has a scalar domain as target domain.
36

Martin Reinecke's avatar
Martin Reinecke committed
37
    It is intended as an objective function for field inference.
38

Philipp Arras's avatar
Philipp Arras committed
39
40
41
    Examples
    --------
     - Information Hamiltonian, i.e. negative-log-probabilities.
Martin Reinecke's avatar
Martin Reinecke committed
42
     - Gibbs free energy, i.e. an averaged Hamiltonian, aka Kullback-Leibler
Philipp Arras's avatar
Philipp Arras committed
43
       divergence.
44
    """
Martin Reinecke's avatar
Martin Reinecke committed
45
46
47
    _target = DomainTuple.scalar_domain()


48
49
class Squared2NormOperator(EnergyOperator):
    """Computes the square of the L2-norm of the output of an operator.
50

Philipp Arras's avatar
Philipp Arras committed
51
52
53
    Parameters
    ----------
    domain : Domain, DomainTuple or tuple of Domain
54
        Domain of the operator in which the L2-norm shall be computed.
Martin Reinecke's avatar
Martin Reinecke committed
55
    """
Philipp Arras's avatar
Philipp Arras committed
56

Martin Reinecke's avatar
Martin Reinecke committed
57
58
59
60
    def __init__(self, domain):
        self._domain = domain

    def apply(self, x):
61
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
62
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
63
            val = Field.scalar(x.val.vdot(x.val))
Martin Reinecke's avatar
Martin Reinecke committed
64
            jac = VdotOperator(2*x.val)(x.jac)
65
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
66
        return Field.scalar(x.vdot(x))
Martin Reinecke's avatar
Martin Reinecke committed
67

Martin Reinecke's avatar
Martin Reinecke committed
68

Martin Reinecke's avatar
Martin Reinecke committed
69
class QuadraticFormOperator(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
70
    """Computes the L2-norm of a Field or MultiField with respect to a
71
    specific kernel given by `endo`.
Philipp Arras's avatar
Philipp Arras committed
72
73
74

    .. math ::
        E(f) = \\frac12 f^\\dagger \\text{endo}(f)
75
76
77

    Parameters
    ----------
Philipp Arras's avatar
Philipp Arras committed
78
    endo : EndomorphicOperator
79
         Kernel of the quadratic form
Martin Reinecke's avatar
Martin Reinecke committed
80
    """
Philipp Arras's avatar
Philipp Arras committed
81
82

    def __init__(self, endo):
Martin Reinecke's avatar
Martin Reinecke committed
83
        from .endomorphic_operator import EndomorphicOperator
Philipp Arras's avatar
Philipp Arras committed
84
        if not isinstance(endo, EndomorphicOperator):
Martin Reinecke's avatar
Martin Reinecke committed
85
            raise TypeError("op must be an EndomorphicOperator")
Philipp Arras's avatar
Philipp Arras committed
86
87
        self._op = endo
        self._domain = endo.domain
Martin Reinecke's avatar
Martin Reinecke committed
88
89

    def apply(self, x):
90
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
91
        if isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
92
93
            t1 = self._op(x.val)
            jac = VdotOperator(t1)(x.jac)
Martin Reinecke's avatar
Martin Reinecke committed
94
            val = Field.scalar(0.5*x.val.vdot(t1))
95
            return x.new(val, jac)
Martin Reinecke's avatar
Martin Reinecke committed
96
        return Field.scalar(0.5*x.vdot(self._op(x)))
Martin Reinecke's avatar
Martin Reinecke committed
97
98
99


class GaussianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
100
    """Computes a negative-log Gaussian.
101

Philipp Arras's avatar
Philipp Arras committed
102
    Represents up to constants in :math:`m`:
Martin Reinecke's avatar
Martin Reinecke committed
103

Philipp Arras's avatar
Philipp Arras committed
104
105
    .. math ::
        E(f) = - \\log G(f-m, D) = 0.5 (f-m)^\\dagger D^{-1} (f-m),
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
106

Philipp Arras's avatar
Philipp Arras committed
107
108
    an information energy for a Gaussian distribution with mean m and
    covariance D.
109

Philipp Arras's avatar
Philipp Arras committed
110
111
112
113
    Parameters
    ----------
    mean : Field
        Mean of the Gaussian. Default is 0.
114
115
    inverse_covariance : LinearOperator
        Inverse covariance of the Gaussian. Default is the identity operator.
Philipp Arras's avatar
Fixup    
Philipp Arras committed
116
    domain : Domain, DomainTuple, tuple of Domain or MultiDomain
Philipp Arras's avatar
Philipp Arras committed
117
118
119
120
121
122
        Operator domain. By default it is inferred from `mean` or
        `covariance` if specified

    Note
    ----
    At least one of the arguments has to be provided.
Martin Reinecke's avatar
Martin Reinecke committed
123
    """
Martin Reinecke's avatar
Martin Reinecke committed
124

125
    def __init__(self, mean=None, inverse_covariance=None, domain=None):
Martin Reinecke's avatar
Martin Reinecke committed
126
127
        if mean is not None and not isinstance(mean, (Field, MultiField)):
            raise TypeError
128
        if inverse_covariance is not None and not isinstance(inverse_covariance, LinearOperator):
Philipp Arras's avatar
Philipp Arras committed
129
130
            raise TypeError

Martin Reinecke's avatar
Martin Reinecke committed
131
132
133
        self._domain = None
        if mean is not None:
            self._checkEquivalence(mean.domain)
134
135
        if inverse_covariance is not None:
            self._checkEquivalence(inverse_covariance.domain)
Martin Reinecke's avatar
Martin Reinecke committed
136
137
138
139
140
        if domain is not None:
            self._checkEquivalence(domain)
        if self._domain is None:
            raise ValueError("no domain given")
        self._mean = mean
141
        if inverse_covariance is None:
142
            self._op = Squared2NormOperator(self._domain).scale(0.5)
Martin Reinecke's avatar
Martin Reinecke committed
143
        else:
144
145
            self._op = QuadraticFormOperator(inverse_covariance)
        self._icov = None if inverse_covariance is None else inverse_covariance
Martin Reinecke's avatar
Martin Reinecke committed
146
147

    def _checkEquivalence(self, newdom):
Martin Reinecke's avatar
fix    
Martin Reinecke committed
148
        newdom = makeDomain(newdom)
Martin Reinecke's avatar
Martin Reinecke committed
149
        if self._domain is None:
Philipp Arras's avatar
Philipp Arras committed
150
            self._domain = newdom
Martin Reinecke's avatar
Martin Reinecke committed
151
        else:
Philipp Arras's avatar
Philipp Arras committed
152
            if self._domain != newdom:
Martin Reinecke's avatar
Martin Reinecke committed
153
154
155
                raise ValueError("domain mismatch")

    def apply(self, x):
156
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
157
        residual = x if self._mean is None else x - self._mean
Philipp Arras's avatar
Changes    
Philipp Arras committed
158
        res = self._op(residual).real
159
        if not isinstance(x, Linearization) or not x.want_metric:
Martin Reinecke's avatar
Martin Reinecke committed
160
161
162
163
164
165
            return res
        metric = SandwichOperator.make(x.jac, self._icov)
        return res.add_metric(metric)


class PoissonianEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
166
167
    """Computes likelihood Hamiltonians of expected count field constrained by
    Poissonian count data.
168

Philipp Arras's avatar
Philipp Arras committed
169
    Represents up to an f-independent term :math:`log(d!)`:
170

Philipp Arras's avatar
Philipp Arras committed
171
172
    .. math ::
        E(f) = -\\log \\text{Poisson}(d|f) = \\sum f - d^\\dagger \\log(f),
173

Philipp Arras's avatar
Philipp Arras committed
174
    where f is a :class:`Field` in data space with the expectation values for
Martin Reinecke's avatar
Martin Reinecke committed
175
    the counts.
Philipp Arras's avatar
Philipp Arras committed
176
177
178
179
180
181

    Parameters
    ----------
    d : Field
        Data field with counts. Needs to have integer dtype and all field
        values need to be non-negative.
Martin Reinecke's avatar
Martin Reinecke committed
182
    """
Philipp Arras's avatar
Philipp Arras committed
183

184
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
185
186
187
188
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
        if np.any(d.local_data < 0):
            raise ValueError
189
190
        self._d = d
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
191
192

    def apply(self, x):
193
        self._check_input(x)
Martin Reinecke's avatar
Martin Reinecke committed
194
        res = x.sum()
Martin Reinecke's avatar
Martin Reinecke committed
195
        tmp = res.val.local_data if isinstance(res, Linearization) else res
Martin Reinecke's avatar
Martin Reinecke committed
196
197
        # if we have no infinity here, we can continue with the calculation;
        # otherwise we know that the result must also be infinity
Martin Reinecke's avatar
Martin Reinecke committed
198
        if not np.isinf(tmp):
Martin Reinecke's avatar
Martin Reinecke committed
199
            res = res - x.log().vdot(self._d)
Martin Reinecke's avatar
Martin Reinecke committed
200
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
201
            return Field.scalar(res)
202
203
        if not x.want_metric:
            return res
Martin Reinecke's avatar
Martin Reinecke committed
204
205
206
        metric = SandwichOperator.make(x.jac, makeOp(1./x.val))
        return res.add_metric(metric)

207

208
class InverseGammaLikelihood(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
209
    """Computes the negative log-likelihood of the inverse gamma distribution.
210
211
212

    It negative log-pdf(x) is given by

Martin Reinecke's avatar
Martin Reinecke committed
213
214
215
216
217
218
219
    .. math ::

        \\sum_i (\\alpha_i+1)*\\ln(x_i) + \\beta_i/x_i

    This is the likelihood for the variance :math:`x=S_k` given data
    :math:`\\beta = 0.5 |s_k|^2` where the Field :math:`s` is known to have
    the covariance :math:`S_k`.
220
221
222
223
224
225
226

    Parameters
    ----------
    beta : Field
        beta parameter of the inverse gamma distribution
    alpha : Scalar, Field, optional
        alpha parameter of the inverse gamma distribution
227
    """
Philipp Arras's avatar
Philipp Arras committed
228

229
230
    def __init__(self, beta, alpha=-0.5):
        if not isinstance(beta, Field):
Philipp Arras's avatar
Philipp Arras committed
231
            raise TypeError
232
233
        self._beta = beta
        if np.isscalar(alpha):
Martin Reinecke's avatar
Martin Reinecke committed
234
235
            alpha = Field.from_local_data(
                beta.domain, np.full(beta.local_data.shape, alpha))
236
237
238
239
        elif not isinstance(alpha, Field):
            raise TypeError
        self._alphap1 = alpha+1
        self._domain = DomainTuple.make(beta.domain)
240
241

    def apply(self, x):
242
        self._check_input(x)
243
        res = x.log().vdot(self._alphap1) + (1./x).vdot(self._beta)
244
245
        if not isinstance(x, Linearization):
            return Field.scalar(res)
246
247
        if not x.want_metric:
            return res
248
        metric = SandwichOperator.make(x.jac, makeOp(self._alphap1/(x.val**2)))
249
250
251
        return res.add_metric(metric)


252
class StudentTEnergy(EnergyOperator):
Lukas Platz's avatar
Lukas Platz committed
253
    """Computes likelihood energy corresponding to Student's t-distribution.
254
255

    .. math ::
Lukas Platz's avatar
Lukas Platz committed
256
257
        E_\\theta(f) = -\\log \\text{StudentT}_\\theta(f)
                     = \\frac{\\theta + 1}{2} \\log(1 + \\frac{f^2}{\\theta}),
258

Lukas Platz's avatar
Lukas Platz committed
259
    where f is a field defined on `domain`.
260
261
262

    Parameters
    ----------
Lukas Platz's avatar
Lukas Platz committed
263
264
    domain : `Domain` or `DomainTuple`
        Domain of the operator
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    theta : Scalar
        Degree of freedom parameter for the student t distribution
    """

    def __init__(self, domain, theta):
        self._domain = DomainTuple.make(domain)
        self._theta = theta
        from .log1p import Log1p
        self._l1p = Log1p(domain)

    def apply(self, x):
        self._check_input(x)
        v = ((self._theta+1)/2)*self._l1p(x**2/self._theta).sum()
        if not isinstance(x, Linearization):
            return Field.scalar(v)
        if not x.want_metric:
            return v
Reimar H Leike's avatar
fixup    
Reimar H Leike committed
282
        met = ScalingOperator((self._theta+1)/(self._theta+3), self.domain)
283
284
285
286
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


Martin Reinecke's avatar
Martin Reinecke committed
287
class BernoulliEnergy(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
288
    """Computes likelihood energy of expected event frequency constrained by
289
290
    event data.

Philipp Arras's avatar
Philipp Arras committed
291
292
293
294
295
296
297
    .. math ::
        E(f) = -\\log \\text{Bernoulli}(d|f)
             = -d^\\dagger \\log f  - (1-d)^\\dagger \\log(1-f),

    where f is a field defined on `d.domain` with the expected
    frequencies of events.

298
299
    Parameters
    ----------
Martin Reinecke's avatar
Martin Reinecke committed
300
    d : Field
Philipp Arras's avatar
Philipp Arras committed
301
        Data field with events (1) or non-events (0).
Martin Reinecke's avatar
Martin Reinecke committed
302
    """
Philipp Arras's avatar
Philipp Arras committed
303

304
    def __init__(self, d):
Philipp Arras's avatar
Philipp Arras committed
305
306
307
308
        if not isinstance(d, Field) or not np.issubdtype(d.dtype, np.integer):
            raise TypeError
        if not np.all(np.logical_or(d.local_data == 0, d.local_data == 1)):
            raise ValueError
Martin Reinecke's avatar
Martin Reinecke committed
309
        self._d = d
310
        self._domain = DomainTuple.make(d.domain)
Martin Reinecke's avatar
Martin Reinecke committed
311
312

    def apply(self, x):
313
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
314
        v = -(x.log().vdot(self._d) + (1. - x).log().vdot(1. - self._d))
Martin Reinecke's avatar
Martin Reinecke committed
315
        if not isinstance(x, Linearization):
Martin Reinecke's avatar
Martin Reinecke committed
316
            return Field.scalar(v)
317
318
        if not x.want_metric:
            return v
Philipp Arras's avatar
Philipp Arras committed
319
        met = makeOp(1./(x.val*(1. - x.val)))
Martin Reinecke's avatar
Martin Reinecke committed
320
321
322
323
        met = SandwichOperator.make(x.jac, met)
        return v.add_metric(met)


324
class StandardHamiltonian(EnergyOperator):
Philipp Arras's avatar
Philipp Arras committed
325
326
    """Computes an information Hamiltonian in its standard form, i.e. with the
    prior being a Gaussian with unit covariance.
327

Philipp Arras's avatar
Philipp Arras committed
328
    Let the likelihood energy be :math:`E_{lh}`. Then this operator computes:
329

Philipp Arras's avatar
Philipp Arras committed
330
331
    .. math ::
         H(f) = 0.5 f^\\dagger f + E_{lh}(f):
332

Martin Reinecke's avatar
Martin Reinecke committed
333
    Other field priors can be represented via transformations of a white
334
335
    Gaussian field into a field with the desired prior probability structure.

Martin Reinecke's avatar
Martin Reinecke committed
336
    By implementing prior information this way, the field prior is represented
337
338
339
    by a generative model, from which NIFTy can draw samples and infer a field
    using the Maximum a Posteriori (MAP) or the Variational Bayes (VB) method.

Philipp Arras's avatar
Philipp Arras committed
340
341
342
343
344
345
346
347
    The metric of this operator can be used as covariance for drawing Gaussian
    samples.

    Parameters
    ----------
    lh : EnergyOperator
        The likelihood energy.
    ic_samp : IterationController
348
        Tells an internal :class:`SamplingEnabler` which convergence criterion
Philipp Arras's avatar
Philipp Arras committed
349
350
351
352
353
354
        to use to draw Gaussian samples.

    See also
    --------
    `Encoding prior knowledge in the structure of the likelihood`,
    Jakob Knollmüller, Torsten A. Ensslin,
Martin Reinecke's avatar
Martin Reinecke committed
355
    `<https://arxiv.org/abs/1812.04403>`_
Martin Reinecke's avatar
Martin Reinecke committed
356
    """
Philipp Arras's avatar
Philipp Arras committed
357

358
    def __init__(self, lh, ic_samp=None, _c_inp=None):
Martin Reinecke's avatar
Martin Reinecke committed
359
360
        self._lh = lh
        self._prior = GaussianEnergy(domain=lh.domain)
361
362
        if _c_inp is not None:
            _, self._prior = self._prior.simplify_for_constant_input(_c_inp)
Martin Reinecke's avatar
Martin Reinecke committed
363
        self._ic_samp = ic_samp
Martin Reinecke's avatar
Martin Reinecke committed
364
        self._domain = lh.domain
Martin Reinecke's avatar
Martin Reinecke committed
365
366

    def apply(self, x):
367
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
368
369
370
        if (self._ic_samp is None or not isinstance(x, Linearization)
                or not x.want_metric):
            return self._lh(x) + self._prior(x)
Martin Reinecke's avatar
Martin Reinecke committed
371
        else:
372
            lhx, prx = self._lh(x), self._prior(x)
373
374
            mtr = SamplingEnabler(lhx.metric, prx.metric,
                                  self._ic_samp)
Philipp Arras's avatar
Philipp Arras committed
375
            return (lhx + prx).add_metric(mtr)
Martin Reinecke's avatar
Martin Reinecke committed
376

Philipp Arras's avatar
Philipp Arras committed
377
378
    def __repr__(self):
        subs = 'Likelihood:\n{}'.format(utilities.indent(self._lh.__repr__()))
379
        subs += '\nPrior:\n{}'.format(self._prior)
Martin Reinecke's avatar
Martin Reinecke committed
380
        return 'StandardHamiltonian:\n' + utilities.indent(subs)
Philipp Arras's avatar
Philipp Arras committed
381

382
383
384
385
    def _simplify_for_constant_input_nontrivial(self, c_inp):
        out, lh1 = self._lh.simplify_for_constant_input(c_inp)
        return out, StandardHamiltonian(lh1, self._ic_samp, _c_inp=c_inp)

Martin Reinecke's avatar
Martin Reinecke committed
386

Martin Reinecke's avatar
Martin Reinecke committed
387
class AveragedEnergy(EnergyOperator):
Philipp Arras's avatar
Docs    
Philipp Arras committed
388
    """Averages an energy over samples.
Martin Reinecke's avatar
Martin Reinecke committed
389

390
391
392
    Parameters
    ----------
    h: Hamiltonian
Philipp Arras's avatar
Philipp Arras committed
393
       The energy to be averaged.
Martin Reinecke's avatar
Martin Reinecke committed
394
    res_samples : iterable of Fields
Torsten Ensslin's avatar
Torsten Ensslin committed
395
396
       Set of residual sample points to be added to mean field for
       approximate estimation of the KL.
397

Philipp Arras's avatar
Docs    
Philipp Arras committed
398
399
400
401
402
    Notes
    -----
    - Having symmetrized residual samples, with both :math:`v_i` and
      :math:`-v_i` being present, ensures that the distribution mean is
      exactly represented.
Torsten Ensslin's avatar
Fix te    
Torsten Ensslin committed
403

Philipp Arras's avatar
Docs    
Philipp Arras committed
404
405
406
    - :class:`AveragedEnergy(h)` approximates
      :math:`\\left< H(f) \\right>_{G(f-m,D)}` if the residuals :math:`f-m`
      are drawn from a Gaussian distribution with covariance :math:`D`.
Martin Reinecke's avatar
Martin Reinecke committed
407
    """
Martin Reinecke's avatar
Martin Reinecke committed
408
409
410

    def __init__(self, h, res_samples):
        self._h = h
Martin Reinecke's avatar
Martin Reinecke committed
411
        self._domain = h.domain
Martin Reinecke's avatar
Martin Reinecke committed
412
413
414
        self._res_samples = tuple(res_samples)

    def apply(self, x):
415
        self._check_input(x)
Philipp Arras's avatar
Philipp Arras committed
416
417
        mymap = map(lambda v: self._h(x + v), self._res_samples)
        return utilities.my_sum(mymap)*(1./len(self._res_samples))