plot.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
14
# Copyright(C) 2013-2019 Max-Planck-Society
15
#
16
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
17

Martin Reinecke's avatar
Martin Reinecke committed
18
19
import os

20
21
import numpy as np

Martin Reinecke's avatar
fix    
Martin Reinecke committed
22
23
24
25
26
27
from . import dobj
from .domains.gl_space import GLSpace
from .domains.hp_space import HPSpace
from .domains.power_space import PowerSpace
from .domains.rg_space import RGSpace
from .field import Field
28

Martin Reinecke's avatar
Martin Reinecke committed
29
30
31
32
33
34
35
36
# relevant properties:
# - x/y size
# - x/y/z log
# - x/y/z min/max
# - colorbar/colormap
# - axis on/off
# - title
# - axis labels
Martin Reinecke's avatar
Martin Reinecke committed
37
# - labels
Martin Reinecke's avatar
Martin Reinecke committed
38

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
39

Martin Reinecke's avatar
Martin Reinecke committed
40
41
42
def _mollweide_helper(xsize):
    xsize = int(xsize)
    ysize = xsize//2
Martin Reinecke's avatar
Martin Reinecke committed
43
    res = np.full(shape=(ysize, xsize), fill_value=np.nan, dtype=np.float64)
Martin Reinecke's avatar
Martin Reinecke committed
44
    xc, yc = (xsize-1)*0.5, (ysize-1)*0.5
Martin Reinecke's avatar
Martin Reinecke committed
45
    u, v = np.meshgrid(np.arange(xsize), np.arange(ysize))
Martin Reinecke's avatar
Martin Reinecke committed
46
    u, v = 2*(u-xc)/(xc/1.02), (v-yc)/(yc/1.02)
Martin Reinecke's avatar
Martin Reinecke committed
47
48
49
50
51
52
53
54
55

    mask = np.where((u*u*0.25 + v*v) <= 1.)
    t1 = v[mask]
    theta = 0.5*np.pi-(
        np.arcsin(2/np.pi*(np.arcsin(t1) + t1*np.sqrt((1.-t1)*(1+t1)))))
    phi = -0.5*np.pi*u[mask]/np.maximum(np.sqrt((1-t1)*(1+t1)), 1e-6)
    phi = np.where(phi < 0, phi+2*np.pi, phi)
    return res, mask, theta, phi

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def _rgb_data(spectral_cube):
    _xyz = np.array(
          [[0.000160, 0.000662, 0.002362, 0.007242, 0.019110,
            0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
            0.314679, 0.357719, 0.383734, 0.386726, 0.370702,
            0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
            0.080507, 0.041072, 0.016172, 0.005132, 0.003816,
            0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
            0.236491, 0.304213, 0.376772, 0.451584, 0.529826,
            0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
            1.014160, 1.074300, 1.118520, 1.134300, 1.123990,
            1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
            0.647467, 0.535110, 0.431567, 0.343690, 0.268329,
            0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
            0.040851, 0.028623, 0.019941, 0.013842, 0.009577,
            0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
            0.001045, 0.000727, 0.000508, 0.000356, 0.000251,
            0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
            0.000033],
           [0.000017, 0.000072, 0.000253, 0.000769, 0.002004,
            0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
            0.038676, 0.049602, 0.062077, 0.074704, 0.089456,
            0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
            0.253589, 0.297665, 0.339133, 0.395379, 0.460777,
            0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
            0.875211, 0.923810, 0.961988, 0.982200, 0.991761,
            0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
            0.868934, 0.825623, 0.777405, 0.720353, 0.658341,
            0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
            0.283493, 0.228254, 0.179828, 0.140211, 0.107633,
            0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
            0.015905, 0.011130, 0.007749, 0.005375, 0.003718,
            0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
            0.000407, 0.000284, 0.000199, 0.000140, 0.000098,
            0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
            0.000013],
           [0.000705, 0.002928, 0.010482, 0.032344, 0.086011,
            0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
            1.553480, 1.798500, 1.967280, 2.027300, 1.994800,
            1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
            0.772125, 0.570060, 0.415254, 0.302356, 0.218502,
            0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
            0.030451, 0.020584, 0.013676, 0.007918, 0.003988,
            0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
            0.000000]])

    MATRIX_SRGB_D65 = np.array(
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
112
            [[3.2404542, -1.5371385, -0.4985314],
113
             [-0.9692660,  1.8760108,  0.0415560],
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
114
             [0.0556434, -0.2040259,  1.0572252]])
115
116
117
118
119
120

    def _gammacorr(inp):
        mask = np.zeros(inp.shape, dtype=np.float64)
        mask[inp <= 0.0031308] = 1.
        r1 = 12.92*inp
        a = 0.055
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
121
        r2 = (1 + a) * (np.maximum(inp, 0.0031308) ** (1/2.4)) - a
122
123
124
        return r1*mask + r2*(1.-mask)

    def lambda2xyz(lam):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
125
126
127
        lammin = 380.
        lammax = 780.
        lam = np.asarray(lam, dtype=np.float64)
128
129
130
131
132
133
        lam = np.clip(lam, lammin, lammax)

        idx = (lam-lammin)/(lammax-lammin)*(_xyz.shape[1]-1)
        ii = np.maximum(0, np.minimum(79, int(idx)))
        w1 = 1.-(idx-ii)
        w2 = 1.-w1
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
134
        c = w1*_xyz[:, ii] + w2*_xyz[:, ii+1]
135
136
137
138
139
140
141
        return c

    def getxyz(n):
        E0, E1 = 1./700., 1./400.
        E = E0 + np.arange(n)*(E1-E0)/(n-1)
        res = np.zeros((3, n), dtype=np.float64)
        for i in range(n):
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
142
            res[:, i] = lambda2xyz(1./E[i])
143
144
        return res

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
145
146
147
148
149
150
151
152
    def to_logscale(arr, lo, hi):
        res = arr.clip(lo, hi)
        res = np.log(res/hi)
        tmp = np.log(hi/lo)
        res += tmp
        res /= tmp
        return res

Philipp Arras's avatar
Philipp Arras committed
153
    shp = spectral_cube.shape[:-1]+(3,)
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
154
    spectral_cube = spectral_cube.reshape((-1, spectral_cube.shape[-1]))
155
156
    xyz = getxyz(spectral_cube.shape[-1])
    xyz_data = np.tensordot(spectral_cube, xyz, axes=[-1, -1])
Martin Reinecke's avatar
Martin Reinecke committed
157
158
    xyz_data /= xyz_data.max()
    xyz_data = to_logscale(xyz_data, max(1e-3, xyz_data.min()), 1.)
159
    rgb_data = xyz_data.copy()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
160
161
    for x in range(xyz_data.shape[0]):
        rgb_data[x] = _gammacorr(np.matmul(MATRIX_SRGB_D65, xyz_data[x]))
Martin Reinecke's avatar
Martin Reinecke committed
162
    rgb_data = rgb_data.clip(0., 1.)
Philipp Arras's avatar
Philipp Arras committed
163
    return rgb_data.reshape(shp)
164
165


Martin Reinecke's avatar
Martin Reinecke committed
166
167
def _find_closest(A, target):
    # A must be sorted
Martin Reinecke's avatar
Martin Reinecke committed
168
169
    idx = np.clip(A.searchsorted(target), 1, len(A)-1)
    idx -= target - A[idx-1] < A[idx] - target
Martin Reinecke's avatar
Martin Reinecke committed
170
171
    return idx

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
172

Philipp Arras's avatar
Philipp Arras committed
173
def _makeplot(name, block=True, dpi=None):
174
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
175
    if dobj.rank != 0:
176
        plt.close()
Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
177
        return
Martin Reinecke's avatar
Martin Reinecke committed
178
    if name is None:
179
180
181
        plt.show(block=block)
        if block:
            plt.close()
Martin Reinecke's avatar
Martin Reinecke committed
182
183
        return
    extension = os.path.splitext(name)[1]
184
    if extension in (".pdf", ".png", ".svg"):
Martin Reinecke's avatar
Martin Reinecke committed
185
        args = {}
Philipp Arras's avatar
Philipp Arras committed
186
187
188
        if dpi is not None:
            args['dpi'] = float(dpi)
        plt.savefig(name, **args)
Martin Reinecke's avatar
Martin Reinecke committed
189
190
191
192
        plt.close()
    else:
        raise ValueError("file format not understood")

Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
193

Martin Reinecke's avatar
Martin Reinecke committed
194
def _limit_xy(**kwargs):
Martin Reinecke's avatar
Martin Reinecke committed
195
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
196
    x1, x2, y1, y2 = plt.axis()
clienhar's avatar
clienhar committed
197
198
199
200
    x1 = kwargs.pop("xmin", x1)
    x2 = kwargs.pop("xmax", x2)
    y1 = kwargs.pop("ymin", y1)
    y2 = kwargs.pop("ymax", y2)
Martin Reinecke's avatar
PEP8    
Martin Reinecke committed
201
202
    plt.axis((x1, x2, y1, y2))

Martin Reinecke's avatar
Martin Reinecke committed
203

Martin Reinecke's avatar
Martin Reinecke committed
204
205
206
207
208
209
210
211
212
def _register_cmaps():
    try:
        if _register_cmaps._cmaps_registered:
            return
    except AttributeError:
        _register_cmaps._cmaps_registered = True

    from matplotlib.colors import LinearSegmentedColormap
    import matplotlib.pyplot as plt
Martin Reinecke's avatar
Martin Reinecke committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    planckcmap = {'red':   ((0., 0., 0.), (.4, 0., 0.), (.5, 1., 1.),
                            (.7, 1., 1.), (.8, .83, .83), (.9, .67, .67),
                            (1., .5, .5)),
                  'green': ((0., 0., 0.), (.2, 0., 0.), (.3, .3, .3),
                            (.4, .7, .7), (.5, 1., 1.), (.6, .7, .7),
                            (.7, .3, .3), (.8, 0., 0.), (1., 0., 0.)),
                  'blue':  ((0., .5, .5), (.1, .67, .67), (.2, .83, .83),
                            (.3, 1., 1.), (.5, 1., 1.), (.6, 0., 0.),
                            (1., 0., 0.))}
    he_cmap = {'red':   ((0., 0., 0.), (.167, 0., 0.), (.333, .5, .5),
                         (.5, 1., 1.), (1., 1., 1.)),
               'green': ((0., 0., 0.), (.5, 0., 0.), (.667, .5, .5),
                         (.833, 1., 1.), (1., 1., 1.)),
               'blue':  ((0., 0., 0.), (.167, 1., 1.), (.333, .5, .5),
                         (.5, 0., 0.), (1., 1., 1.))}
    fd_cmap = {'red':   ((0., .35, .35), (.1, .4, .4), (.2, .25, .25),
                         (.41, .47, .47), (.5, .8, .8), (.56, .96, .96),
                         (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                         (.9, .5, .5), (1., .4, .4)),
               'green': ((0., 0., 0.), (.2, 0., 0.), (.362, .88, .88),
                         (.5, 1., 1.), (.638, .88, .88), (.8, .25, .25),
                         (.9, .3, .3), (1., .2, .2)),
               'blue':  ((0., .35, .35), (.1, .4, .4), (.2, .8, .8),
                         (.26, .8, .8), (.41, 1., 1.), (.44, .96, .96),
                         (.5, .8, .8), (.59, .47, .47), (.8, 0., 0.),
                         (1., 0., 0.))}
    fdu_cmap = {'red':   ((0., 1., 1.), (0.1, .8, .8), (.2, .65, .65),
                          (.41, .6, .6), (.5, .7, .7), (.56, .96, .96),
                          (.59, 1., 1.), (.74, .8, .8), (.8, .8, .8),
                          (.9, .5, .5), (1., .4, .4)),
                'green': ((0., .9, .9), (.362, .95, .95), (.5, 1., 1.),
                          (.638, .88, .88), (.8, .25, .25), (.9, .3, .3),
                          (1., .2, .2)),
                'blue':  ((0., 1., 1.), (.1, .8, .8), (.2, 1., 1.),
                          (.41, 1., 1.), (.44, .96, .96), (.5, .7, .7),
                          (.59, .42, .42), (.8, 0., 0.), (1., 0., 0.))}
    pm_cmap = {'red':   ((0., 1., 1.), (.1, .96, .96), (.2, .84, .84),
                         (.3, .64, .64), (.4, .36, .36), (.5, 0., 0.),
                         (1., 0., 0.)),
               'green': ((0., .5, .5), (.1, .32, .32), (.2, .18, .18),
                         (.3, .8, .8),  (.4, .2, .2), (.5, 0., 0.),
                         (.6, .2, .2), (.7, .8, .8), (.8, .18, .18),
                         (.9, .32, .32), (1., .5, .5)),
               'blue':  ((0., 0., 0.), (.5, 0., 0.), (.6, .36, .36),
                         (.7, .64, .64), (.8, .84, .84), (.9, .96, .96),
                         (1., 1., 1.))}
Martin Reinecke's avatar
Martin Reinecke committed
259
260
261

    plt.register_cmap(cmap=LinearSegmentedColormap("Planck-like", planckcmap))
    plt.register_cmap(cmap=LinearSegmentedColormap("High Energy", he_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
262
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Map", fd_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
263
264
    plt.register_cmap(cmap=LinearSegmentedColormap("Faraday Uncertainty",
                                                   fdu_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
265
    plt.register_cmap(cmap=LinearSegmentedColormap("Plus Minus", pm_cmap))
Martin Reinecke's avatar
Martin Reinecke committed
266

Martin Reinecke's avatar
Martin Reinecke committed
267

268
def _plot1D(f, ax, **kwargs):
269
    import matplotlib.pyplot as plt
270

271
272
273
274
275
    for i, fld in enumerate(f):
        if not isinstance(fld, Field):
            raise TypeError("incorrect data type")
        if i == 0:
            dom = fld.domain
276
277
            if (len(dom) != 1):
                raise ValueError("input field must have exactly one domain")
278
279
280
        else:
            if fld.domain != dom:
                raise ValueError("domain mismatch")
281
    dom = dom[0]
Martin Reinecke's avatar
Martin Reinecke committed
282

clienhar's avatar
clienhar committed
283
    label = kwargs.pop("label", None)
284
    if not isinstance(label, list):
Martin Reinecke's avatar
Martin Reinecke committed
285
        label = [label] * len(f)
Martin Reinecke's avatar
Martin Reinecke committed
286

Martin Reinecke's avatar
Martin Reinecke committed
287
    linewidth = kwargs.pop("linewidth", 1.)
Philipp Arras's avatar
Philipp Arras committed
288
    if not isinstance(linewidth, list):
Martin Reinecke's avatar
Martin Reinecke committed
289
        linewidth = [linewidth] * len(f)
Philipp Arras's avatar
Philipp Arras committed
290

clienhar's avatar
clienhar committed
291
    alpha = kwargs.pop("alpha", None)
Philipp Arras's avatar
Philipp Arras committed
292
    if not isinstance(alpha, list):
Martin Reinecke's avatar
Martin Reinecke committed
293
        alpha = [alpha] * len(f)
Philipp Arras's avatar
Philipp Arras committed
294

clienhar's avatar
clienhar committed
295
296
297
    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
298

Martin Reinecke's avatar
Martin Reinecke committed
299
    if isinstance(dom, RGSpace):
300
        plt.yscale(kwargs.pop("yscale", "linear"))
301
302
303
304
305
306
307
308
309
310
311
        npoints = dom.shape[0]
        dist = dom.distances[0]
        xcoord = np.arange(npoints, dtype=np.float64)*dist
        for i, fld in enumerate(f):
            ycoord = fld.to_global_data()
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
        _limit_xy(**kwargs)
        if label != ([None]*len(f)):
            plt.legend()
        return
Martin Reinecke's avatar
Martin Reinecke committed
312
    elif isinstance(dom, PowerSpace):
313
314
        plt.xscale(kwargs.pop("xscale", "log"))
        plt.yscale(kwargs.pop("yscale", "log"))
Philipp Arras's avatar
Philipp Arras committed
315
        xcoord = dom.k_lengths
Martin Reinecke's avatar
Martin Reinecke committed
316
        for i, fld in enumerate(f):
317
318
            ycoord = fld.to_global_data_rw()
            ycoord[0] = ycoord[1]
Martin Reinecke's avatar
Martin Reinecke committed
319
320
            plt.plot(xcoord, ycoord, label=label[i],
                     linewidth=linewidth[i], alpha=alpha[i])
Martin Reinecke's avatar
Martin Reinecke committed
321
        _limit_xy(**kwargs)
322
323
        if label != ([None]*len(f)):
            plt.legend()
Martin Reinecke's avatar
Martin Reinecke committed
324
        return
325
326
327
328
329
330
331
332
    raise ValueError("Field type not(yet) supported")


def _plot2D(f, ax, **kwargs):
    import matplotlib.pyplot as plt

    dom = f.domain

333
334
335
336
337
338
339
340
    if len(dom) > 2:
        raise ValueError("DomainTuple can have at most two entries.")

    # check for multifrequency plotting
    have_rgb = False
    if len(dom) == 2:
        if (not isinstance(dom[1], RGSpace)) or len(dom[1].shape) != 1:
            raise TypeError("need 1D RGSpace as second domain")
341
342
343
344
345
346
        if dom[1].shape[0] == 1:
            from .sugar import from_global_data
            f = from_global_data(f.domain[0], f.to_global_data()[..., 0])
        else:
            rgb = _rgb_data(f.to_global_data())
            have_rgb = True
347
348
349

    foo = kwargs.pop("norm", None)
    norm = {} if foo is None else {'norm': foo}
Philipp Arras's avatar
Philipp Arras committed
350
351

    foo = kwargs.pop("aspect", None)
352
    aspect = {} if foo is None else {'aspect': foo}
353
354
355
356
357

    ax.set_title(kwargs.pop("title", ""))
    ax.set_xlabel(kwargs.pop("xlabel", ""))
    ax.set_ylabel(kwargs.pop("ylabel", ""))
    dom = dom[0]
358
359
    if not have_rgb:
        cmap = kwargs.pop("colormap", plt.rcParams['image.cmap'])
360
361
362
363

    if isinstance(dom, RGSpace):
        nx, ny = dom.shape
        dx, dy = dom.distances
364
365
366
367
368
369
370
371
372
373
        if have_rgb:
            im = ax.imshow(
                rgb, extent=[0, nx*dx, 0, ny*dy], origin="lower", **norm,
                **aspect)
        else:
            im = ax.imshow(
                f.to_global_data().T, extent=[0, nx*dx, 0, ny*dy],
                vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                cmap=cmap, origin="lower", **norm, **aspect)
            plt.colorbar(im)
374
375
        _limit_xy(**kwargs)
        return
Martin Reinecke's avatar
Martin Reinecke committed
376
    elif isinstance(dom, (HPSpace, GLSpace)):
Martin Reinecke's avatar
Martin Reinecke committed
377
378
379
        import pyHealpix
        xsize = 800
        res, mask, theta, phi = _mollweide_helper(xsize)
380
        if have_rgb:
Martin Reinecke's avatar
cleanup    
Martin Reinecke committed
381
382
            res = np.full(shape=res.shape+(3,), fill_value=1.,
                          dtype=np.float64)
383

Martin Reinecke's avatar
Martin Reinecke committed
384
385
386
387
        if isinstance(dom, HPSpace):
            ptg = np.empty((phi.size, 2), dtype=np.float64)
            ptg[:, 0] = theta
            ptg[:, 1] = phi
388
            base = pyHealpix.Healpix_Base(int(np.sqrt(dom.size//12)), "RING")
389
390
391
392
            if have_rgb:
                res[mask] = rgb[base.ang2pix(ptg)]
            else:
                res[mask] = f.to_global_data()[base.ang2pix(ptg)]
Martin Reinecke's avatar
Martin Reinecke committed
393
394
395
396
397
398
        else:
            ra = np.linspace(0, 2*np.pi, dom.nlon+1)
            dec = pyHealpix.GL_thetas(dom.nlat)
            ilat = _find_closest(dec, theta)
            ilon = _find_closest(ra, phi)
            ilon = np.where(ilon == dom.nlon, 0, ilon)
399
400
401
402
            if have_rgb:
                res[mask] = rgb[ilat*dom[0].nlon + ilon]
            else:
                res[mask] = f.to_global_data()[ilat*dom.nlon + ilon]
Martin Reinecke's avatar
Martin Reinecke committed
403
        plt.axis('off')
404
405
406
407
408
409
        if have_rgb:
            plt.imshow(res, origin="lower")
        else:
            plt.imshow(res, vmin=kwargs.get("zmin"), vmax=kwargs.get("zmax"),
                       cmap=cmap, origin="lower")
            plt.colorbar(orientation="horizontal")
410
411
412
413
414
415
416
417
418
419
420
421
        return
    raise ValueError("Field type not(yet) supported")


def _plot(f, ax, **kwargs):
    _register_cmaps()
    if isinstance(f, Field):
        f = [f]
    f = list(f)
    if len(f) == 0:
        raise ValueError("need something to plot")
    if not isinstance(f[0], Field):
Martin Reinecke's avatar
Martin Reinecke committed
422
        raise TypeError("incorrect data type")
423
    dom1 = f[0].domain
Martin Reinecke's avatar
Martin Reinecke committed
424
425
    if (len(dom1) == 1 and
        (isinstance(dom1[0], PowerSpace) or
426
427
         (isinstance(dom1[0], RGSpace) and
          len(dom1[0].shape) == 1))):
428
429
430
431
432
433
        _plot1D(f, ax, **kwargs)
        return
    else:
        if len(f) != 1:
            raise ValueError("need exactly one Field for 2D plot")
        _plot2D(f[0], ax, **kwargs)
Martin Reinecke's avatar
Martin Reinecke committed
434
435
        return
    raise ValueError("Field type not(yet) supported")
Martin Reinecke's avatar
Martin Reinecke committed
436

Martin Reinecke's avatar
tweaks    
Martin Reinecke committed
437

438
439
440
441
442
443
444
445
446
447
class Plot(object):
    def __init__(self):
        self._plots = []
        self._kwargs = []

    def add(self, f, **kwargs):
        """Add a figure to the current list of plots.

        Notes
        -----
Philipp Arras's avatar
Docs    
Philipp Arras committed
448
449
        After doing one or more calls `add()`, one needs to call `output()` to
        show or save the plot.
450
451
452

        Parameters
        ----------
Philipp Arras's avatar
Philipp Arras committed
453
        f: Field or list of Field
Philipp Arras's avatar
Philipp Arras committed
454
            If `f` is a single Field, it must be defined on a single `RGSpace`,
Martin Reinecke's avatar
typo    
Martin Reinecke committed
455
            `PowerSpace`, `HPSpace`, `GLSpace`.
Philipp Arras's avatar
Philipp Arras committed
456
            If it is a list, all list members must be Fields defined over the
457
458
            same one-dimensional `RGSpace` or `PowerSpace`.
        title: string
Philipp Arras's avatar
Docs    
Philipp Arras committed
459
            Title of the plot.
460
        xlabel: string
Philipp Arras's avatar
Philipp Arras committed
461
            Label for the x axis.
462
        ylabel: string
Philipp Arras's avatar
Philipp Arras committed
463
            Label for the y axis.
464
        [xyz]min, [xyz]max: float
Philipp Arras's avatar
Philipp Arras committed
465
            Limits for the values to plot.
466
        colormap: string
Philipp Arras's avatar
Philipp Arras committed
467
            Color map to use for the plot (if it is a 2D plot).
468
        linewidth: float or list of floats
Philipp Arras's avatar
Philipp Arras committed
469
            Line width.
470
        label: string of list of strings
Philipp Arras's avatar
Philipp Arras committed
471
            Annotation string.
472
        alpha: float or list of floats
Philipp Arras's avatar
Docs    
Philipp Arras committed
473
            Transparency value.
474
        """
Philipp Arras's avatar
Philipp Arras committed
475
476
        from .multi_field import MultiField
        if isinstance(f, MultiField):
Philipp Arras's avatar
Philipp Arras committed
477
478
479
480
481
482
483
484
485
            for kk in f.domain.keys():
                self._plots.append(f[kk])
                mykwargs = kwargs.copy()
                if 'title' in kwargs:
                    mykwargs['title'] = "{} {}".format(kk, kwargs['title'])
                else:
                    mykwargs['title'] = "{}".format(kk)
                self._kwargs.append(mykwargs)
            return
486
487
488
489
490
491
492
493
494
        self._plots.append(f)
        self._kwargs.append(kwargs)

    def output(self, **kwargs):
        """Plot the accumulated list of figures.

        Parameters
        ----------
        title: string
Philipp Arras's avatar
Philipp Arras committed
495
496
497
498
499
500
501
502
            Title of the full plot.
        nx, ny: int
            Number of subplots to use in x- and y-direction.
            Default: square root of the numer of plots, rounded up.
        xsize, ysize: float
            Dimensions of the full plot in inches. Default: 6.
        name: string
            If left empty, the plot will be shown on the screen,
503
            otherwise it will be written to a file with the given name.
Philipp Arras's avatar
Philipp Arras committed
504
            Supported extensions: .png and .pdf. Default: None.
505
506
507
        block: bool
            Override the blocking behavior of the non-interactive plotting
            mode. The plot will not be closed in this case but is left open!
508
509
510
511
512
513
        """
        import matplotlib.pyplot as plt
        nplot = len(self._plots)
        fig = plt.figure()
        if "title" in kwargs:
            plt.suptitle(kwargs.pop("title"))
514
515
516
517
518
519
520
521
        nx = kwargs.pop("nx", 0)
        ny = kwargs.pop("ny", 0)
        if nx == ny == 0:
            nx = ny = int(np.ceil(np.sqrt(nplot)))
        elif nx == 0:
            nx = np.ceil(nplot/ny)
        elif ny == 0:
            ny = np.ceil(nplot/nx)
522
523
524
525
526
527
528
529
530
531
532
533
        if nx*ny < nplot:
            raise ValueError(
                'Figure dimensions not sufficient for number of plots. '
                'Available plot slots: {}, number of plots: {}'
                .format(nx*ny, nplot))
        xsize = kwargs.pop("xsize", 6)
        ysize = kwargs.pop("ysize", 6)
        fig.set_size_inches(xsize, ysize)
        for i in range(nplot):
            ax = fig.add_subplot(ny, nx, i+1)
            _plot(self._plots[i], ax, **self._kwargs[i])
        fig.tight_layout()
Philipp Arras's avatar
Philipp Arras committed
534
        _makeplot(kwargs.pop("name", None), block=kwargs.pop("block", True), dpi=kwargs.pop("dpi", None))