nifty_core.py 50.9 KB
Newer Older
1
2
# NIFTY (Numerical Information Field Theory) has been developed at the
# Max-Planck-Institute for Astrophysics.
Marco Selig's avatar
Marco Selig committed
3
##
4
# Copyright (C) 2013 Max-Planck-Society
Marco Selig's avatar
Marco Selig committed
5
##
6
7
# Author: Marco Selig
# Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
Marco Selig's avatar
Marco Selig committed
8
##
9
10
11
12
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
Marco Selig's avatar
Marco Selig committed
13
##
14
15
16
17
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
Marco Selig's avatar
Marco Selig committed
18
##
19
20
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
Marco Selig's avatar
Marco Selig committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

"""
    ..                  __   ____   __
    ..                /__/ /   _/ /  /_
    ..      __ ___    __  /  /_  /   _/  __   __
    ..    /   _   | /  / /   _/ /  /   /  / /  /
    ..   /  / /  / /  / /  /   /  /_  /  /_/  /
    ..  /__/ /__/ /__/ /__/    \___/  \___   /  core
    ..                               /______/

    .. The NIFTY project homepage is http://www.mpa-garching.mpg.de/ift/nifty/

    NIFTY [#]_, "Numerical Information Field Theory", is a versatile
    library designed to enable the development of signal inference algorithms
    that operate regardless of the underlying spatial grid and its resolution.
    Its object-oriented framework is written in Python, although it accesses
    libraries written in Cython, C++, and C for efficiency.

    NIFTY offers a toolkit that abstracts discretized representations of
    continuous spaces, fields in these spaces, and operators acting on fields
    into classes. Thereby, the correct normalization of operations on fields is
    taken care of automatically without concerning the user. This allows for an
    abstract formulation and programming of inference algorithms, including
    those derived within information field theory. Thus, NIFTY permits its user
Marco Selig's avatar
Marco Selig committed
45
    to rapidly prototype algorithms in 1D and then apply the developed code in
Marco Selig's avatar
Marco Selig committed
46
47
48
49
50
    higher-dimensional settings of real world problems. The set of spaces on
    which NIFTY operates comprises point sets, n-dimensional regular grids,
    spherical spaces, their harmonic counterparts, and product spaces
    constructed as combinations of those.

51
52
53
54
55
56
57
    References
    ----------
    .. [#] Selig et al., "NIFTY -- Numerical Information Field Theory --
        a versatile Python library for signal inference",
        `A&A, vol. 554, id. A26 <http://dx.doi.org/10.1051/0004-6361/201321236>`_,
        2013; `arXiv:1301.4499 <http://www.arxiv.org/abs/1301.4499>`_

Marco Selig's avatar
Marco Selig committed
58
59
60
61
62
63
    Class & Feature Overview
    ------------------------
    The NIFTY library features three main classes: **spaces** that represent
    certain grids, **fields** that are defined on spaces, and **operators**
    that apply to fields.

64
65
    .. Overview of all (core) classes:
    ..
Marco Selig's avatar
Marco Selig committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    .. - switch
    .. - notification
    .. - _about
    .. - random
    .. - space
    ..     - point_space
    ..     - rg_space
    ..     - lm_space
    ..     - gl_space
    ..     - hp_space
    ..     - nested_space
    .. - field
    .. - operator
    ..     - diagonal_operator
    ..         - power_operator
    ..     - projection_operator
    ..     - vecvec_operator
    ..     - response_operator
    .. - probing
    ..     - trace_probing
    ..     - diagonal_probing

88
89
    Overview of the main classes and functions:

Marco Selig's avatar
Marco Selig committed
90
91
    .. automodule:: nifty

92
93
94
95
96
97
98
99
100
101
102
103
104
105
    - :py:class:`space`
        - :py:class:`point_space`
        - :py:class:`rg_space`
        - :py:class:`lm_space`
        - :py:class:`gl_space`
        - :py:class:`hp_space`
        - :py:class:`nested_space`
    - :py:class:`field`
    - :py:class:`operator`
        - :py:class:`diagonal_operator`
            - :py:class:`power_operator`
        - :py:class:`projection_operator`
        - :py:class:`vecvec_operator`
        - :py:class:`response_operator`
Marco Selig's avatar
Marco Selig committed
106

107
        .. currentmodule:: nifty.nifty_tools
Marco Selig's avatar
Marco Selig committed
108

109
110
        - :py:class:`invertible_operator`
        - :py:class:`propagator_operator`
Marco Selig's avatar
Marco Selig committed
111

112
        .. currentmodule:: nifty.nifty_explicit
Marco Selig's avatar
Marco Selig committed
113

114
        - :py:class:`explicit_operator`
Marco Selig's avatar
Marco Selig committed
115

116
    .. automodule:: nifty
Marco Selig's avatar
Marco Selig committed
117

118
119
120
    - :py:class:`probing`
        - :py:class:`trace_probing`
        - :py:class:`diagonal_probing`
Marco Selig's avatar
Marco Selig committed
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        .. currentmodule:: nifty.nifty_explicit

        - :py:class:`explicit_probing`

    .. currentmodule:: nifty.nifty_tools

    - :py:class:`conjugate_gradient`
    - :py:class:`steepest_descent`

    .. currentmodule:: nifty.nifty_explicit

    - :py:func:`explicify`

    .. currentmodule:: nifty.nifty_power

    - :py:func:`weight_power`,
      :py:func:`smooth_power`,
      :py:func:`infer_power`,
      :py:func:`interpolate_power`
Marco Selig's avatar
Marco Selig committed
141
142
143
144

"""
from __future__ import division
import numpy as np
Marco Selig's avatar
Marco Selig committed
145
import pylab as pl
146

147
148
149
from d2o import distributed_data_object,\
                STRATEGIES as DISTRIBUTION_STRATEGIES

150
from nifty_paradict import space_paradict,\
151
    point_space_paradict
Ultimanet's avatar
Ultimanet committed
152

csongor's avatar
csongor committed
153
from nifty.config import about
154

Ultimanet's avatar
Ultimanet committed
155
from nifty_random import random
Marco Selig's avatar
Marco Selig committed
156

157
POINT_DISTRIBUTION_STRATEGIES = DISTRIBUTION_STRATEGIES['global']
Marco Selig's avatar
Marco Selig committed
158

Ultimanet's avatar
Ultimanet committed
159
160

class space(object):
Marco Selig's avatar
Marco Selig committed
161
    """
Ultimanet's avatar
Ultimanet committed
162
163
164
165
166
167
168
        ..     _______   ______    ____ __   _______   _______
        ..   /  _____/ /   _   | /   _   / /   ____/ /   __  /
        ..  /_____  / /  /_/  / /  /_/  / /  /____  /  /____/
        .. /_______/ /   ____/  \______|  \______/  \______/  class
        ..          /__/

        NIFTY base class for spaces and their discretizations.
Marco Selig's avatar
Marco Selig committed
169

Ultimanet's avatar
Ultimanet committed
170
171
172
        The base NIFTY space class is an abstract class from which other
        specific space subclasses, including those preimplemented in NIFTY
        (e.g. the regular grid class) must be derived.
Marco Selig's avatar
Marco Selig committed
173
174
175

        Parameters
        ----------
176
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
177
178
            Data type of the field values for a field defined on this space
            (default: numpy.float64).
179
        datamodel :
Marco Selig's avatar
Marco Selig committed
180
181
182

        See Also
        --------
Ultimanet's avatar
Ultimanet committed
183
184
185
186
187
188
189
190
        point_space :  A class for unstructured lists of numbers.
        rg_space : A class for regular cartesian grids in arbitrary dimensions.
        hp_space : A class for the HEALPix discretization of the sphere
            [#]_.
        gl_space : A class for the Gauss-Legendre discretization of the sphere
            [#]_.
        lm_space : A class for spherical harmonic components.
        nested_space : A class for product spaces.
Marco Selig's avatar
Marco Selig committed
191

Ultimanet's avatar
Ultimanet committed
192
193
194
195
196
197
198
199
        References
        ----------
        .. [#] K.M. Gorski et al., 2005, "HEALPix: A Framework for
               High-Resolution Discretization and Fast Analysis of Data
               Distributed on the Sphere", *ApJ* 622..759G.
        .. [#] M. Reinecke and D. Sverre Seljebotn, 2013, "Libsharp - spherical
               harmonic transforms revisited";
               `arXiv:1303.4945 <http://www.arxiv.org/abs/1303.4945>`_
Marco Selig's avatar
Marco Selig committed
200
201
202

        Attributes
        ----------
Ultimanet's avatar
Ultimanet committed
203
        para : {single object, list of objects}
204
205
206
            This is a freeform list of parameters that derivatives of the space
            class can use.
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
207
208
209
210
211
212
213
            Data type of the field values for a field defined on this space.
        discrete : bool
            Whether the space is inherently discrete (true) or a discretization
            of a continuous space (false).
        vol : numpy.ndarray
            An array of pixel volumes, only one component if the pixels all
            have the same volume.
Marco Selig's avatar
Marco Selig committed
214
    """
215

Ultima's avatar
Ultima committed
216
    def __init__(self):
Marco Selig's avatar
Marco Selig committed
217
        """
Ultimanet's avatar
Ultimanet committed
218
            Sets the attributes for a space class instance.
Marco Selig's avatar
Marco Selig committed
219
220
221

            Parameters
            ----------
222
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
223
224
                Data type of the field values for a field defined on this space
                (default: numpy.float64).
225
            datamodel :
Marco Selig's avatar
Marco Selig committed
226

Ultimanet's avatar
Ultimanet committed
227
228
229
            Returns
            -------
            None
Marco Selig's avatar
Marco Selig committed
230
        """
231
        self.paradict = space_paradict()
232

Ultimanet's avatar
Ultimanet committed
233
234
235
    @property
    def para(self):
        return self.paradict['default']
236

Ultimanet's avatar
Ultimanet committed
237
238
239
    @para.setter
    def para(self, x):
        self.paradict['default'] = x
Marco Selig's avatar
Marco Selig committed
240

Ultima's avatar
Ultima committed
241
242
243
    def __hash__(self):
        return hash(())

244
    def _identifier(self):
Marco Selig's avatar
Marco Selig committed
245
        """
246
247
248
        _identiftier returns an object which contains all information needed
        to uniquely idetnify a space. It returns a (immutable) tuple which
        therefore can be compared.
249
        """
250
251
252
253
254
255
256
257
258
259
260
261
        return tuple(sorted(vars(self).items()))

    def __eq__(self, x):
        if isinstance(x, type(self)):
            return self._identifier() == x._identifier()
        else:
            return False

    def __ne__(self, x):
        return not self.__eq__(x)

    def __len__(self):
262
        return int(self.dim)
Marco Selig's avatar
Marco Selig committed
263

264
    def copy(self):
265
        return space(para=self.para,
266
                     dtype=self.dtype)
Marco Selig's avatar
Marco Selig committed
267

Ultimanet's avatar
Ultimanet committed
268
    def getitem(self, data, key):
269
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
270
            "ERROR: no generic instance method 'getitem'."))
Marco Selig's avatar
Marco Selig committed
271

csongor's avatar
csongor committed
272
    def setitem(self, data, update, key):
273
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
274
            "ERROR: no generic instance method 'getitem'."))
275

Ultimanet's avatar
Ultimanet committed
276
    def apply_scalar_function(self, x, function, inplace=False):
277
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
278
            "ERROR: no generic instance method 'apply_scalar_function'."))
Marco Selig's avatar
Marco Selig committed
279

280
281
    @property
    def shape(self):
282
        raise NotImplementedError(about._errors.cstring(
Ultimanet's avatar
Ultimanet committed
283
            "ERROR: no generic instance method 'shape'."))
Marco Selig's avatar
Marco Selig committed
284

285
286
    @property
    def dim(self):
Marco Selig's avatar
Marco Selig committed
287
        """
Ultimanet's avatar
Ultimanet committed
288
            Computes the dimension of the space, i.e.\  the number of pixels.
Marco Selig's avatar
Marco Selig committed
289
290
291

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
292
293
294
            split : bool, *optional*
                Whether to return the dimension split up, i.e. the numbers of
                pixels in each direction, or not (default: False).
Marco Selig's avatar
Marco Selig committed
295

Ultimanet's avatar
Ultimanet committed
296
297
298
299
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
Marco Selig's avatar
Marco Selig committed
300
        """
301
        raise NotImplementedError(about._errors.cstring(
302
            "ERROR: no generic instance method 'dim'."))
Marco Selig's avatar
Marco Selig committed
303

304
305
    @property
    def dof(self):
Marco Selig's avatar
Marco Selig committed
306
        """
Ultimanet's avatar
Ultimanet committed
307
            Computes the number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
308
309
310

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
311
312
            dof : int
                Number of degrees of freedom of the space.
Marco Selig's avatar
Marco Selig committed
313
        """
314
        raise NotImplementedError(about._errors.cstring(
315
            "ERROR: no generic instance method 'dof'."))
Marco Selig's avatar
Marco Selig committed
316

317
318
319
320
321
322
323
324
325
326
327
328
329
    @property
    def dof_split(self):
        """
            Computes the number of degrees of freedom of the space.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'dof_split'."))

330
    def complement_cast(self, x, axis=None):
csongor's avatar
csongor committed
331
        return x
Marco Selig's avatar
Marco Selig committed
332

333
    # TODO: Move enforce power into power_indices class
334
    def enforce_power(self, spec, **kwargs):
Marco Selig's avatar
Marco Selig committed
335
        """
Ultimanet's avatar
Ultimanet committed
336
            Provides a valid power spectrum array from a given object.
Marco Selig's avatar
Marco Selig committed
337
338
339

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
340
341
342
343
            spec : {scalar, list, numpy.ndarray, nifty.field, function}
                Fiducial power spectrum from which a valid power spectrum is to
                be calculated. Scalars are interpreted as constant power
                spectra.
Marco Selig's avatar
Marco Selig committed
344
345
346

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
347
348
349
350
351
352
353
354
355
356
357
358
            spec : numpy.ndarray
                Valid power spectrum.

            Other parameters
            ----------------
            size : int, *optional*
                Number of bands the power spectrum shall have (default: None).
            kindex : numpy.ndarray, *optional*
                Scale of each band.
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
359
360
                Flag specifying if the spectral binning is performed on
                logarithmic
Ultimanet's avatar
Ultimanet committed
361
362
363
364
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
365
366
                Number of used spectral bins; if given `log` is set to
                ``False``;
Ultimanet's avatar
Ultimanet committed
367
368
369
370
371
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
372
373
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
374
375
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Marco Selig's avatar
Marco Selig committed
376
377

        """
378
        raise NotImplementedError(about._errors.cstring(
379
            "ERROR: no generic instance method 'enforce_power'."))
Marco Selig's avatar
Marco Selig committed
380

381
    def check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
382
        """
383
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
384
385
386

            Parameters
            ----------
387
388
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
389
390
391

            Returns
            -------
392
393
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
394
        """
Ultima's avatar
Ultima committed
395
396
397
398
399
        if codomain is None:
            return False
        else:
            raise NotImplementedError(about._errors.cstring(
                "ERROR: no generic instance method 'check_codomain'."))
Marco Selig's avatar
Marco Selig committed
400

401
    def get_codomain(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
402
        """
403
404
405
            Generates a compatible codomain to which transformations are
            reasonable, usually either the position basis or the basis of
            harmonic eigenmodes.
Marco Selig's avatar
Marco Selig committed
406
407
408

            Parameters
            ----------
409
410
411
412
            coname : string, *optional*
                String specifying a desired codomain (default: None).
            cozerocenter : {bool, numpy.ndarray}, *optional*
                Whether or not the grid is zerocentered for each axis or not
Ultimanet's avatar
Ultimanet committed
413
                (default: None).
414
415
416
417
            conest : list, *optional*
                List of nested spaces of the codomain (default: None).
            coorder : list, *optional*
                Permutation of the list of nested spaces (default: None).
Marco Selig's avatar
Marco Selig committed
418
419
420

            Returns
            -------
421
422
            codomain : nifty.space
                A compatible codomain.
Ultimanet's avatar
Ultimanet committed
423
        """
424
        raise NotImplementedError(about._errors.cstring(
425
            "ERROR: no generic instance method 'get_codomain'."))
Marco Selig's avatar
Marco Selig committed
426

427
    def get_random_values(self, **kwargs):
Marco Selig's avatar
Marco Selig committed
428
        """
Ultimanet's avatar
Ultimanet committed
429
430
            Generates random field values according to the specifications given
            by the parameters.
Marco Selig's avatar
Marco Selig committed
431

Ultimanet's avatar
Ultimanet committed
432
433
434
435
436
437
438
            Returns
            -------
            x : numpy.ndarray
                Valid field values.

            Other parameters
            ----------------
Marco Selig's avatar
Marco Selig committed
439
            random : string, *optional*
Ultimanet's avatar
Ultimanet committed
440
441
442
                Specifies the probability distribution from which the random
                numbers are to be drawn.
                Supported distributions are:
Marco Selig's avatar
Marco Selig committed
443
444

                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
445
446
                - "gau" (normal distribution with zero-mean and a given
                    standard deviation or variance)
Marco Selig's avatar
Marco Selig committed
447
448
449
450
                - "syn" (synthesizes from a given power spectrum)
                - "uni" (uniform distribution over [vmin,vmax[)

                (default: None).
Ultimanet's avatar
Ultimanet committed
451
452
453
454
455
            dev : float, *optional*
                Standard deviation (default: 1).
            var : float, *optional*
                Variance, overriding `dev` if both are specified
                (default: 1).
456
457
            spec : {scalar, list, numpy.ndarray, nifty.field, function},
                    *optional*
Ultimanet's avatar
Ultimanet committed
458
                Power spectrum (default: 1).
459
460
461
462
            pindex : numpy.ndarray, *optional*
                Indexing array giving the power spectrum index of each band
                (default: None).
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
463
                Scale of each band (default: None).
464
            codomain : nifty.space, *optional*
Ultimanet's avatar
Ultimanet committed
465
                A compatible codomain with power indices (default: None).
466
            log : bool, *optional*
467
468
                Flag specifying if the spectral binning is performed on
                logarithmic
469
470
471
472
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
473
474
                Number of used spectral bins; if given `log` is set to
                ``False``;
475
476
477
478
479
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
480
481
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
482
483
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
Ultimanet's avatar
Ultimanet committed
484
485
486
487
            vmin : float, *optional*
                Lower limit for a uniform distribution (default: 0).
            vmax : float, *optional*
                Upper limit for a uniform distribution (default: 1).
Marco Selig's avatar
Marco Selig committed
488
        """
489
490
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_random_values'."))
Marco Selig's avatar
Marco Selig committed
491

492
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
493
        """
494
495
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
496
497
498

            Parameters
            ----------
499
500
501
502
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
503
504
505

            Returns
            -------
506
507
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
508
        """
509
        raise NotImplementedError(about._errors.cstring(
510
            "ERROR: no generic instance method 'calc_weight'."))
Marco Selig's avatar
Marco Selig committed
511

512
513
514
    def get_weight(self, power=1):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_weight'."))
Marco Selig's avatar
Marco Selig committed
515

Ultima's avatar
Ultima committed
516
517
518
519
    def calc_norm(self, x, q):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'norm'."))

520
    def dot_contraction(self, x, axes):
Marco Selig's avatar
Marco Selig committed
521
        """
522
523
            Computes the discrete inner product of two given arrays of field
            values.
Marco Selig's avatar
Marco Selig committed
524
525
526

            Parameters
            ----------
527
528
529
530
            x : numpy.ndarray
                First array
            y : numpy.ndarray
                Second array
Marco Selig's avatar
Marco Selig committed
531
532
533

            Returns
            -------
534
535
            dot : scalar
                Inner product of the two arrays.
Ultimanet's avatar
Ultimanet committed
536
        """
537
        raise NotImplementedError(about._errors.cstring(
538
            "ERROR: no generic instance method 'dot'."))
Marco Selig's avatar
Marco Selig committed
539

540
    def calc_transform(self, x, codomain=None, **kwargs):
Marco Selig's avatar
Marco Selig committed
541
        """
542
            Computes the transform of a given array of field values.
Marco Selig's avatar
Marco Selig committed
543

Ultimanet's avatar
Ultimanet committed
544
545
            Parameters
            ----------
546
547
548
549
550
            x : numpy.ndarray
                Array to be transformed.
            codomain : nifty.space, *optional*
                codomain space to which the transformation shall map
                (default: self).
Marco Selig's avatar
Marco Selig committed
551
552
553

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
554
555
            Tx : numpy.ndarray
                Transformed array
556

Ultimanet's avatar
Ultimanet committed
557
558
559
560
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations performed in specific transformations.
561
        """
562
563
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_transform'."))
Marco Selig's avatar
Marco Selig committed
564

565
    def calc_smooth(self, x, sigma=0, **kwargs):
Marco Selig's avatar
Marco Selig committed
566
        """
Ultimanet's avatar
Ultimanet committed
567
568
            Smoothes an array of field values by convolution with a Gaussian
            kernel.
Marco Selig's avatar
Marco Selig committed
569
570
571

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
572
573
574
575
576
            x : numpy.ndarray
                Array of field values to be smoothed.
            sigma : float, *optional*
                Standard deviation of the Gaussian kernel, specified in units
                of length in position space (default: 0).
Marco Selig's avatar
Marco Selig committed
577
578
579

            Returns
            -------
Ultimanet's avatar
Ultimanet committed
580
581
            Gx : numpy.ndarray
                Smoothed array.
Marco Selig's avatar
Marco Selig committed
582

Ultimanet's avatar
Ultimanet committed
583
584
585
586
            Other parameters
            ----------------
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
587
        """
588
589
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_smooth'."))
Marco Selig's avatar
Marco Selig committed
590

591
    def calc_power(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
592
        """
Ultimanet's avatar
Ultimanet committed
593
            Computes the power of an array of field values.
Marco Selig's avatar
Marco Selig committed
594
595
596

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
597
598
599
            x : numpy.ndarray
                Array containing the field values of which the power is to be
                calculated.
Marco Selig's avatar
Marco Selig committed
600
601
602
603

            Returns
            -------
            spec : numpy.ndarray
Ultimanet's avatar
Ultimanet committed
604
                Power contained in the input array.
Marco Selig's avatar
Marco Selig committed
605
606
607

            Other parameters
            ----------------
Ultimanet's avatar
Ultimanet committed
608
609
610
            pindex : numpy.ndarray, *optional*
                Indexing array assigning the input array components to
                components of the power spectrum (default: None).
611
            kindex : numpy.ndarray, *optional*
Ultimanet's avatar
Ultimanet committed
612
613
614
615
                Scale corresponding to each band in the power spectrum
                (default: None).
            rho : numpy.ndarray, *optional*
                Number of degrees of freedom per band (default: None).
616
617
618
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
619
620
                Flag specifying if the spectral binning is performed on
                logarithmic
621
622
623
624
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
            nbin : integer, *optional*
625
626
                Number of used spectral bins; if given `log` is set to
                ``False``;
627
628
629
630
631
                integers below the minimum of 3 induce an automatic setting;
                by default no binning is done (default: None).
            binbounds : {list, array}, *optional*
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
632
633
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
634
635
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
636

Marco Selig's avatar
Marco Selig committed
637
        """
638
639
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_power'."))
Marco Selig's avatar
Marco Selig committed
640

641
642
643
644
645
646
647
    def calc_real_Q(self, x):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_real_Q'."))

    def calc_bincount(self, x, weights=None, minlength=None):
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'calc_bincount'."))
Marco Selig's avatar
Marco Selig committed
648

649
    def get_plot(self, x, **kwargs):
Marco Selig's avatar
Marco Selig committed
650
        """
Ultimanet's avatar
Ultimanet committed
651
652
            Creates a plot of field values according to the specifications
            given by the parameters.
653
654
655

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
            x : numpy.ndarray
                Array containing the field values.

            Returns
            -------
            None

            Other parameters
            ----------------
            title : string, *optional*
                Title of the plot (default: "").
            vmin : float, *optional*
                Minimum value to be displayed (default: ``min(x)``).
            vmax : float, *optional*
                Maximum value to be displayed (default: ``max(x)``).
            power : bool, *optional*
                Whether to plot the power contained in the field or the field
                values themselves (default: False).
            unit : string, *optional*
                Unit of the field values (default: "").
            norm : string, *optional*
                Scaling of the field values before plotting (default: None).
            cmap : matplotlib.colors.LinearSegmentedColormap, *optional*
                Color map to be used for two-dimensional plots (default: None).
            cbar : bool, *optional*
                Whether to show the color bar or not (default: True).
            other : {single object, tuple of objects}, *optional*
                Object or tuple of objects to be added, where objects can be
                scalars, arrays, or fields (default: None).
            legend : bool, *optional*
                Whether to show the legend or not (default: False).
            mono : bool, *optional*
                Whether to plot the monopole or not (default: True).
            save : string, *optional*
                Valid file name where the figure is to be stored, by default
                the figure is not saved (default: False).
            error : {float, numpy.ndarray, nifty.field}, *optional*
                Object indicating some confidence interval to be plotted
                (default: None).
            kindex : numpy.ndarray, *optional*
                Scale corresponding to each band in the power spectrum
                (default: None).
            codomain : nifty.space, *optional*
                A compatible codomain for power indexing (default: None).
            log : bool, *optional*
701
702
                Flag specifying if the spectral binning is performed on
                logarithmic
703
704
705
                scale or not; if set, the number of used bins is set
                automatically (if not given otherwise); by default no binning
                is done (default: None).
Ultimanet's avatar
Ultimanet committed
706
            nbin : integer, *optional*
707
708
                Number of used spectral bins; if given `log` is set to
                ``False``;
709
                integers below the minimum of 3 induce an automatic setting;
710
                by default no binning is done (default: None).
Ultimanet's avatar
Ultimanet committed
711
            binbounds : {list, array}, *optional*
712
713
                User specific inner boundaries of the bins, which are preferred
                over the above parameters; by default no binning is done
714
715
                (default: None).
            vmin : {scalar, list, ndarray, field}, *optional*
Ultimanet's avatar
Ultimanet committed
716
717
718
719
                Lower limit of the uniform distribution if ``random == "uni"``
                (default: 0).
            iter : int, *optional*
                Number of iterations (default: 0).
Marco Selig's avatar
Marco Selig committed
720
721

        """
722
723
        raise NotImplementedError(about._errors.cstring(
            "ERROR: no generic instance method 'get_plot'."))
Marco Selig's avatar
Marco Selig committed
724

Ultimanet's avatar
Ultimanet committed
725
    def __repr__(self):
Ultima's avatar
Ultima committed
726
727
728
729
        string = ""
        string += str(type(self)) + "\n"
        string += "paradict: " + str(self.paradict) + "\n"
        return string
Marco Selig's avatar
Marco Selig committed
730

Ultimanet's avatar
Ultimanet committed
731
    def __str__(self):
Ultima's avatar
Ultima committed
732
        return self.__repr__()
Marco Selig's avatar
Marco Selig committed
733
734


Ultimanet's avatar
Ultimanet committed
735
class point_space(space):
Marco Selig's avatar
Marco Selig committed
736
    """
Ultimanet's avatar
Ultimanet committed
737
738
739
740
741
742
743
        ..                            __             __
        ..                          /__/           /  /_
        ..      ______    ______    __   __ ___   /   _/
        ..    /   _   | /   _   | /  / /   _   | /  /
        ..   /  /_/  / /  /_/  / /  / /  / /  / /  /_
        ..  /   ____/  \______/ /__/ /__/ /__/  \___/  space class
        .. /__/
Marco Selig's avatar
Marco Selig committed
744

Ultimanet's avatar
Ultimanet committed
745
        NIFTY subclass for unstructured spaces.
Marco Selig's avatar
Marco Selig committed
746

Ultimanet's avatar
Ultimanet committed
747
748
        Unstructured spaces are lists of values without any geometrical
        information.
Marco Selig's avatar
Marco Selig committed
749
750
751

        Parameters
        ----------
Ultimanet's avatar
Ultimanet committed
752
753
        num : int
            Number of points.
754
        dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
755
            Data type of the field values (default: None).
Marco Selig's avatar
Marco Selig committed
756

Ultimanet's avatar
Ultimanet committed
757
        Attributes
Marco Selig's avatar
Marco Selig committed
758
        ----------
Ultimanet's avatar
Ultimanet committed
759
760
        para : numpy.ndarray
            Array containing the number of points.
761
        dtype : numpy.dtype
Ultimanet's avatar
Ultimanet committed
762
763
764
765
766
767
            Data type of the field values.
        discrete : bool
            Parameter captioning the fact that a :py:class:`point_space` is
            always discrete.
        vol : numpy.ndarray
            Pixel volume of the :py:class:`point_space`, which is always 1.
Marco Selig's avatar
Marco Selig committed
768
    """
769

csongor's avatar
csongor committed
770
    def __init__(self, num, dtype=np.dtype('float')):
Ultimanet's avatar
Ultimanet committed
771
772
        """
            Sets the attributes for a point_space class instance.
Marco Selig's avatar
Marco Selig committed
773

Ultimanet's avatar
Ultimanet committed
774
775
776
777
            Parameters
            ----------
            num : int
                Number of points.
778
            dtype : numpy.dtype, *optional*
Ultimanet's avatar
Ultimanet committed
779
                Data type of the field values (default: numpy.float64).
Marco Selig's avatar
Marco Selig committed
780

Ultimanet's avatar
Ultimanet committed
781
782
783
784
            Returns
            -------
            None.
        """
Ultima's avatar
Ultima committed
785
        self._cache_dict = {'check_codomain': {}}
786
787
        self.paradict = point_space_paradict(num=num)

788
789
        # parse dtype
        dtype = np.dtype(dtype)
Ultima's avatar
Ultima committed
790
791
792
793
794
795
796
797
798
        if dtype not in [np.dtype('bool'),
                         np.dtype('int16'),
                         np.dtype('int32'),
                         np.dtype('int64'),
                         np.dtype('float32'),
                         np.dtype('float64'),
                         np.dtype('complex64'),
                         np.dtype('complex128')]:
            raise ValueError(about._errors.cstring(
799
                             "WARNING: incompatible dtype: " + str(dtype)))
Ultima's avatar
Ultima committed
800
        self.dtype = dtype
801

Ultimanet's avatar
Ultimanet committed
802
        self.discrete = True
Ultima's avatar
Ultima committed
803
#        self.harmonic = False
804
        self.distances = (np.float(1),)
Marco Selig's avatar
Marco Selig committed
805

Ultimanet's avatar
Ultimanet committed
806
807
808
809
    @property
    def para(self):
        temp = np.array([self.paradict['num']], dtype=int)
        return temp
810

Ultimanet's avatar
Ultimanet committed
811
812
    @para.setter
    def para(self, x):
Ultima's avatar
Ultima committed
813
        self.paradict['num'] = x[0]
814

Ultima's avatar
Ultima committed
815
816
817
818
    def __hash__(self):
        # Extract the identifying parts from the vars(self) dict.
        result_hash = 0
        for (key, item) in vars(self).items():
Ultima's avatar
Ultima committed
819
820
            if key in ['_cache_dict']:
                continue
Ultima's avatar
Ultima committed
821
822
823
            result_hash ^= item.__hash__() * hash(key)
        return result_hash

824
825
826
827
828
    def _identifier(self):
        # Extract the identifying parts from the vars(self) dict.
        temp = [(ii[0],
                 ((lambda x: x[1].__hash__() if x[0] == 'comm' else x)(ii)))
                for ii in vars(self).iteritems()
Ultima's avatar
Ultima committed
829
                if ii[0] not in ['_cache_dict']
830
831
832
833
                ]
        # Return the sorted identifiers as a tuple.
        return tuple(sorted(temp))

834
    def copy(self):
835
        return point_space(num=self.paradict['num'],
csongor's avatar
csongor committed
836
                           dtype=self.dtype)
837

Ultimanet's avatar
Ultimanet committed
838
839
    def getitem(self, data, key):
        return data[key]
Marco Selig's avatar
Marco Selig committed
840

Ultimanet's avatar
Ultimanet committed
841
    def setitem(self, data, update, key):
842
        data[key] = update
Marco Selig's avatar
Marco Selig committed
843

Ultimanet's avatar
Ultimanet committed
844
    def apply_scalar_function(self, x, function, inplace=False):
845
        return x.apply_scalar_function(function, inplace=inplace)
846

847
848
    @property
    def shape(self):
849
        return (self.paradict['num'],)
Marco Selig's avatar
Marco Selig committed
850

851
852
    @property
    def dim(self):
Ultimanet's avatar
Ultimanet committed
853
854
        """
            Computes the dimension of the space, i.e.\  the number of points.
Marco Selig's avatar
Marco Selig committed
855

Ultimanet's avatar
Ultimanet committed
856
857
858
859
860
            Parameters
            ----------
            split : bool, *optional*
                Whether to return the dimension as an array with one component
                or as a scalar (default: False).
Marco Selig's avatar
Marco Selig committed
861

Ultimanet's avatar
Ultimanet committed
862
863
864
865
866
            Returns
            -------
            dim : {int, numpy.ndarray}
                Dimension(s) of the space.
        """
867
        return np.prod(self.shape)
Marco Selig's avatar
Marco Selig committed
868

869
870
    @property
    def dof(self):
Ultimanet's avatar
Ultimanet committed
871
872
873
874
        """
            Computes the number of degrees of freedom of the space, i.e./  the
            number of points for real-valued fields and twice that number for
            complex-valued fields.
Marco Selig's avatar
Marco Selig committed
875

Ultimanet's avatar
Ultimanet committed
876
877
878
879
880
            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
881
882
883
        dof = self.dim
        if issubclass(self.dtype.type, np.complexfloating):
            dof = dof * 2
Ultima's avatar
Ultima committed
884
        return dof
885

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    @property
    def dof_split(self):
        """
            Computes the number of degrees of freedom of the space, i.e./  the
            number of points for real-valued fields and twice that number for
            complex-valued fields.

            Returns
            -------
            dof : int
                Number of degrees of freedom of the space.
        """
        dof = self.shape
        if issubclass(self.dtype.type, np.complexfloating):
            dof = tuple(np.array(dof)*2)
        return dof

    @property
    def vol(self, split=False):
        return np.prod(self.distances)

    @property
    def vol_split(self):
        return self.distances
Marco Selig's avatar
Marco Selig committed
910

911
912
    @property
    def meta_volume(self):
Marco Selig's avatar
Marco Selig committed
913
        """
914
            Calculates the meta volumes.
Ultimanet's avatar
Ultimanet committed
915

916
917
918
919
920
            The meta volumes are the volumes associated with each component of
            a field, taking into account field components that are not
            explicitly included in the array of field values but are determined
            by symmetry conditions. In the case of an :py:class:`rg_space`, the
            meta volumes are simply the pixel volumes.
Marco Selig's avatar
Marco Selig committed
921
922
923

            Parameters
            ----------
924
925
926
            total : bool, *optional*
                Whether to return the total meta volume of the space or the
                individual ones of each pixel (default: False).
Marco Selig's avatar
Marco Selig committed
927
928
929

            Returns
            -------
930
931
            mol : {numpy.ndarray, float}
                Meta volume of the pixels or the complete space.
Ultimanet's avatar
Ultimanet committed
932
        """
933
934
935
936
937
938
        return self.dim() * self.vol()

    @property
    def meta_volume_split(self):
        mol = self.cast(1, dtype=np.dtype('float'))
        return self.calc_weight(mol, power=1)
939

940
941
942
943
    def enforce_power(self, spec, **kwargs):
        """
            Raises an error since the power spectrum is ill-defined for point
            spaces.
Marco Selig's avatar
Marco Selig committed
944
        """
945
946
947
        raise AttributeError(about._errors.cstring(
            "ERROR: the definition of power spectra is ill-defined for " +
            "(unstructured) point spaces."))
Ultimanet's avatar
Ultimanet committed
948

949
    def _enforce_power_helper(self, spec, size, kindex):
950
951
952
953
        # TODO: Resolve this import by splitting nifty_core into nifty_space
        # and nifty_point_space
        from nifty_field import field

954
955
956
        # Now it's about to extract a powerspectrum from spec
        # First of all just extract a numpy array. The shape is cared about
        # later.
957
        dtype = np.dtype('float')
958
959
960
961
        # Case 1: spec is a function
        if callable(spec):
            # Try to plug in the kindex array in the function directly
            try:
962
                spec = np.array(spec(kindex), dtype=dtype)
963
964
965
966
967
            except:
                # Second try: Use a vectorized version of the function.
                # This is slower, but better than nothing
                try:
                    spec = np.array(np.vectorize(spec)(kindex),
968
                                    dtype=dtype)
969
970
971
972
973
974
975
976
977
978
                except:
                    raise TypeError(about._errors.cstring(
                        "ERROR: invalid power spectra function."))

        # Case 2: spec is a field:
        elif isinstance(spec, field):
            try:
                spec = spec.val.get_full_data()
            except AttributeError:
                spec = spec.val
979
            spec = spec.astype(dtype).flatten()
Marco Selig's avatar
Marco Selig committed
980

981
982
        # Case 3: spec is a scalar or something else:
        else:
983
            spec = np.array(spec, dtype=dtype).flatten()
984
985
986
987
988

        # Make some sanity checks
        # check finiteness
        if not np.all(np.isfinite(spec)):
            about.warnings.cprint("WARNING: infinite value(s).")
Marco Selig's avatar
Marco Selig committed
989

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        # check positivity (excluding null)
        if np.any(spec < 0):
            raise ValueError(about._errors.cstring(
                "ERROR: nonpositive value(s)."))
        if np.any(spec == 0):
            about.warnings.cprint("WARNING: nonpositive value(s).")

        # Set the size parameter
        if size is None:
            size = len(kindex)

        # Fix the size of the spectrum
        # If spec is singlevalued, expand it
        if np.size(spec) == 1:
            spec = spec * np.ones(size, dtype=spec.dtype)
        # If the size does not fit at all, throw an exception
        elif np.size(spec) < size:
            raise ValueError(about._errors.cstring("ERROR: size mismatch ( " +
                                                   str(np.size(spec)) + " < " +
                                                   str(size) + " )."))
        elif np.size(spec) > size:
            about.warnings.cprint("WARNING: power spectrum cut to size ( == " +
                                  str(size) + " ).")
            spec = spec[:size]

        return spec
Ultimanet's avatar
Ultimanet committed
1016

1017
    def check_codomain(self, codomain):
Ultima's avatar
Ultima committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
        check_dict = self._cache_dict['check_codomain']
        temp_id = id(codomain)
        if temp_id in check_dict:
            return check_dict[temp_id]
        else:
            temp_result = self._check_codomain(codomain)
            check_dict[temp_id] = temp_result
            return temp_result

    def _check_codomain(self, codomain):
Marco Selig's avatar
Marco Selig committed
1028
        """
1029
            Checks whether a given codomain is compatible to the space or not.
Marco Selig's avatar
Marco Selig committed
1030
1031
1032

            Parameters
            ----------
1033
1034
            codomain : nifty.space
                Space to be checked for compatibility.
Marco Selig's avatar
Marco Selig committed
1035
1036
1037

            Returns
            -------
1038
1039
            check : bool
                Whether or not the given codomain is compatible to the space.
Marco Selig's avatar
Marco Selig committed
1040
        """
1041
1042
        if codomain is None:
            return False
1043

1044
1045
        if not isinstance(codomain, space):
            raise TypeError(about._errors.cstring(
Ultima's avatar
Ultima committed
1046
                "ERROR: invalid input. The given input is not a nifty space."))
Ultimanet's avatar
Ultimanet committed
1047

1048
1049
1050
1051
        if codomain == self:
            return True
        else:
            return False
Ultimanet's avatar
Ultimanet committed
1052

1053
1054
1055
1056
1057
    def get_codomain(self, **kwargs):
        """
            Generates a compatible codomain to which transformations are
            reasonable, in this case another instance of
            :py:class:`point_space` with the same properties.
Marco Selig's avatar
Marco Selig committed
1058

1059
1060
1061
1062
1063
1064
            Returns
            -------
            codomain : nifty.point_space
                A compatible codomain.
        """
        return self.copy()
Marco Selig's avatar
Marco Selig committed
1065

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
#    def get_random_values(self, **kwargs):
#        """
#            Generates random field values according to the specifications given
#            by the parameters.
#
#            Returns
#            -------
#            x : numpy.ndarray
#                Valid field values.
#
#            Other parameters
#            ----------------
#            random : string, *optional*
#                Specifies the probability distribution from which the random
#                numbers are to be drawn.
#                Supported distributions are:
#
#                - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i}
#                - "gau" (normal distribution with zero-mean and a given
#                standard
#                    deviation or variance)
#                - "syn" (synthesizes from a given power spectrum)
#                - "uni" (uniform distribution over [vmin,vmax[)
#
#                (default: None).
#            dev : float, *optional*
#                Standard deviation (default: 1).
#            var : float, *optional*
#                Variance, overriding `dev` if both are specified
#                (default: 1).
#            spec : {scalar, list, numpy.ndarray, nifty.field, function},
#            *optional*
#                Power spectrum (default: 1).
#            pindex : numpy.ndarray, *optional*
#                Indexing array giving the power spectrum index of each band
#                (default: None).
#            kindex : numpy.ndarray, *optional*
#                Scale of each band (default: None).
#            codomain : nifty.space, *optional*
#                A compatible codomain with power indices (default: None).
#            log : bool, *optional*
#                Flag specifying if the spectral binning is performed on
#                logarithmic
#                scale or not; if set, the number of used bins is set
#                automatically (if not given otherwise); by default no binning
#                is done (default: None).
#            nbin : integer, *optional*
#                Number of used spectral bins; if given `log` is set to
#                ``False``;
#                integers below the minimum of 3 induce an automatic setting;
#                by default no binning is done (default: None).
#            binbounds : {list, array}, *optional*
#                User specific inner boundaries of the bins, which are preferred
#                over the above parameters; by default no binning is done
#                (default: None).
#                vmin : {scalar, list, ndarray, field}, *optional*
#                Lower limit of the uniform distribution if ``random == "uni"``
#                (default: 0).
#            vmin : float, *optional*
#                Lower limit for a uniform distribution (default: 0).
#            vmax : float, *optional*
#                Upper limit for a uniform distribution (default: 1).
#        """
#
#        arg = random.parse_arguments(self, **kwargs)
#
#        if arg is None:
#            return self.cast(0)
#
#        # Prepare the empty distributed_data_object
#        sample = distributed_data_object(
#                                    global_shape=self.shape,
#                                    dtype=self.dtype)
#
#        # Case 1: uniform distribution over {-1,+1}/{1,i,-1,-i}
#        if arg['random'] == 'pm1':
#            sample.apply_generator(lambda s: random.pm1(dtype=self.dtype,
#                                                        shape=s))
#
#        # Case 2: normal distribution with zero-mean and a given standard
#        #         deviation or variance
#        elif arg['random'] == 'gau':
#            std = arg['std']
#            if np.isscalar(std) or std is None:
#                processed_std = std
#            else:
#                try:
#                    processed_std = sample.distributor. \
#                        extract_local_data(std)
#                except(AttributeError):
#                    processed_std = std
#
#            sample.apply_generator(lambda s: random.gau(dtype=self.dtype,
#                                                        shape=s,
#                                                        mean=arg['mean'],
#                                                        std=processed_std))
#
#        # Case 3: uniform distribution
#        elif arg['random'] == 'uni':
#            sample.apply_generator(lambda s: random.uni(dtype=self.dtype,
#                                                        shape=s,
#                                                        vmin=arg['vmin'],
#                                                        vmax=arg['vmax']))
#        return sample
1170

1171
    def calc_weight(self, x, power=1):
Marco Selig's avatar
Marco Selig committed
1172
        """
Ultimanet's avatar
Ultimanet committed
1173
1174
            Weights a given array of field values with the pixel volumes (not
            the meta volumes) to a given power.
Marco Selig's avatar
Marco Selig committed
1175
1176
1177

            Parameters
            ----------
Ultimanet's avatar
Ultimanet committed
1178
1179
1180
1181
            x : numpy.ndarray
                Array to be weighted.
            power : float, *optional*
                Power of the pixel volumes to be used (default: 1).
Marco Selig's avatar
Marco Selig committed
1182
1183

            Returns
Ultimanet's avatar
Ultimanet committed
1184
1185
1186
            -------
            y : numpy.ndarray
                Weighted array.
Marco Selig's avatar
Marco Selig committed
1187
        """
1188
1189
1190
        # weight
        return x * self.get_weight(power=power)

1191
    def get_weight(self, power=1, split=False):
1192
1193
1194
1195
1196
        splitted_weight = tuple(np.array(self.distances)**np.array(power))
        if not split:
            return np.prod(splitted_weight)
        else:
            return splitted_weight
Marco Selig's avatar
Marco Selig committed
1197

Ultima's avatar
Ultima committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    def calc_norm(self, x, q=2):
        """
            Computes the Lq-norm of field values.

            Parameters
            ----------
            x : np.ndarray
                The data array
            q : scalar
                Parameter q of the Lq-norm (default: 2).

            Returns
            -------
            norm : scalar
                The Lq-norm of the field values.

        """
        if q == 2:
            result = self.calc_dot(x, x)
        else:
            y = x**(q - 1)
            result = self.calc_dot(x, y)

        result = result**(1. / q)
        return result