smoothing_operator.py 10.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# NIFTy
# Copyright (C) 2017  Theo Steininger
#
# Author: Theo Steininger
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

Jait Dixit's avatar
Jait Dixit committed
19
20
21
22
23
import numpy as np

import nifty.nifty_utilities as utilities
from nifty.operators.endomorphic_operator import EndomorphicOperator
from nifty.operators.fft_operator import FFTOperator
Mihai Baltac's avatar
Mihai Baltac committed
24
from nifty.operators.smoothing_operator import smooth_util as su
25
from d2o import STRATEGIES
Jait Dixit's avatar
Jait Dixit committed
26

27

28
class SmoothingOperator(EndomorphicOperator):
Jait Dixit's avatar
Jait Dixit committed
29
    # ---Overwritten properties and methods---
30
    def __init__(self, domain=(), sigma=0, log_distances=False):
31
32

        self._domain = self._parse_domain(domain)
Jait Dixit's avatar
Jait Dixit committed
33
34
35

        if len(self.domain) != 1:
            raise ValueError(
36
37
                'ERROR: SmoothOperator accepts only exactly one '
                'space as input domain.'
Jait Dixit's avatar
Jait Dixit committed
38
            )
Jait Dixit's avatar
Jait Dixit committed
39

40
41
42
        self.sigma = sigma
        self.log_distances = log_distances

43
        self._direct_smoothing_width = 3.
Jait Dixit's avatar
Jait Dixit committed
44

45
    def _inverse_times(self, x, spaces):
46
        return self._smoothing_helper(x, spaces, inverse=True)
Jait Dixit's avatar
Jait Dixit committed
47

48
    def _times(self, x, spaces):
49
        return self._smoothing_helper(x, spaces, inverse=False)
Jait Dixit's avatar
Jait Dixit committed
50

Jait Dixit's avatar
Jait Dixit committed
51
    # ---Mandatory properties and methods---
52
53
54
55
    @property
    def domain(self):
        return self._domain

Jait Dixit's avatar
Jait Dixit committed
56
    @property
Martin Reinecke's avatar
Martin Reinecke committed
57
    def self_adjoint(self):
theos's avatar
theos committed
58
        return True
Jait Dixit's avatar
Jait Dixit committed
59

Jait Dixit's avatar
Jait Dixit committed
60
61
62
    @property
    def unitary(self):
        return False
Jait Dixit's avatar
Jait Dixit committed
63
64

    # ---Added properties and methods---
65

Jait Dixit's avatar
Jait Dixit committed
66
67
68
69
    @property
    def sigma(self):
        return self._sigma

70
71
72
73
74
75
76
77
78
79
80
81
82
    @sigma.setter
    def sigma(self, sigma):
        self._sigma = np.float(sigma)

    @property
    def log_distances(self):
        return self._log_distances

    @log_distances.setter
    def log_distances(self, log_distances):
        self._log_distances = bool(log_distances)

    def _smoothing_helper(self, x, spaces, inverse):
theos's avatar
theos committed
83
84
85
86
87
88
89
90
91
92
        if self.sigma == 0:
            return x.copy()

        # the domain of the smoothing operator contains exactly one space.
        # Hence, if spaces is None, but we passed LinearOperator's
        # _check_input_compatibility, we know that x is also solely defined
        # on that space
        if spaces is None:
            spaces = (0,)
        else:
Jait Dixit's avatar
Jait Dixit committed
93
94
            spaces = utilities.cast_axis_to_tuple(spaces, len(x.domain))

95
96
97
98
99
100
101
        try:
            result = self._fft_smoothing(x, spaces, inverse)
        except ValueError:
            result = self._direct_smoothing(x, spaces, inverse)
        return result

    def _fft_smoothing(self, x, spaces, inverse):
theos's avatar
theos committed
102
        Transformator = FFTOperator(x.domain[spaces[0]])
Jait Dixit's avatar
Jait Dixit committed
103

theos's avatar
theos committed
104
105
106
107
108
        # transform to the (global-)default codomain and perform all remaining
        # steps therein
        transformed_x = Transformator(x, spaces=spaces)
        codomain = transformed_x.domain[spaces[0]]
        coaxes = transformed_x.domain_axes[spaces[0]]
109

theos's avatar
theos committed
110
111
112
        # create the kernel using the knowledge of codomain about itself
        axes_local_distribution_strategy = \
            transformed_x.val.get_axes_local_distribution_strategy(axes=coaxes)
Jait Dixit's avatar
Jait Dixit committed
113

114
        kernel = codomain.get_distance_array(
115
116
117
118
119
            distribution_strategy=axes_local_distribution_strategy)

        if self.log_distances:
            kernel.apply_scalar_function(np.log, inplace=True)

theos's avatar
theos committed
120
        kernel.apply_scalar_function(
121
            codomain.get_fft_smoothing_kernel_function(self.sigma),
theos's avatar
theos committed
122
            inplace=True)
Jait Dixit's avatar
Jait Dixit committed
123

theos's avatar
theos committed
124
125
126
127
128
        # now, apply the kernel to transformed_x
        # this is done node-locally utilizing numpys reshaping in order to
        # apply the kernel to the correct axes
        local_transformed_x = transformed_x.val.get_local_data(copy=False)
        local_kernel = kernel.get_local_data(copy=False)
Jait Dixit's avatar
Jait Dixit committed
129

130
        reshaper = [transformed_x.shape[i] if i in coaxes else 1
theos's avatar
theos committed
131
132
                    for i in xrange(len(transformed_x.shape))]
        local_kernel = np.reshape(local_kernel, reshaper)
Jait Dixit's avatar
Jait Dixit committed
133

theos's avatar
theos committed
134
135
136
137
138
        # apply the kernel
        if inverse:
            local_transformed_x /= local_kernel
        else:
            local_transformed_x *= local_kernel
Jait Dixit's avatar
Jait Dixit committed
139

theos's avatar
theos committed
140
        transformed_x.val.set_local_data(local_transformed_x, copy=False)
Jait Dixit's avatar
Jait Dixit committed
141

theos's avatar
theos committed
142
143
144
145
        smoothed_x = Transformator.inverse_times(transformed_x, spaces=spaces)

        result = x.copy_empty()
        result.set_val(smoothed_x, copy=False)
Jait Dixit's avatar
Jait Dixit committed
146

theos's avatar
theos committed
147
        return result
148
149
150
151
152
153

    def _direct_smoothing(self, x, spaces, inverse):
        # infer affected axes
        # we rely on the knowledge, that `spaces` is a tuple with length 1.
        affected_axes = x.domain_axes[spaces[0]]

154
155
156
157
158
        if len(affected_axes) > 1:
            raise ValueError("By this implementation only one-dimensional "
                             "spaces can be smoothed directly.")

        affected_axis = affected_axes[0]
159
160

        distance_array = x.domain[spaces[0]].get_distance_array(
161
162
            distribution_strategy='not')
        distance_array = distance_array.get_local_data(copy=False)
163
164

        if self.log_distances:
165
            np.log(distance_array, out=distance_array)
166
167
168
169
170
171
172
173
174

        # collect the local data + ghost cells
        local_data_Q = False

        if x.distribution_strategy == 'not':
            local_data_Q = True
        elif x.distribution_strategy in STRATEGIES['slicing']:
            # infer the local start/end based on the slicing information of
            # x's d2o. Only gets non-trivial for axis==0.
175
            if 0 != affected_axis:
176
177
                local_data_Q = True
            else:
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
                start_index = x.val.distributor.local_start
                start_distance = distance_array[start_index]
                augmented_start_distance = \
                    (start_distance - self._direct_smoothing_width*self.sigma)
                augmented_start_index = \
                    np.searchsorted(distance_array, augmented_start_distance)
                true_start = start_index - augmented_start_index
                end_index = x.val.distributor.local_end
                end_distance = distance_array[end_index-1]
                augmented_end_distance = \
                    (end_distance + self._direct_smoothing_width*self.sigma)
                augmented_end_index = \
                    np.searchsorted(distance_array, augmented_end_distance)
                true_end = true_start + x.val.distributor.local_length
                augmented_slice = slice(augmented_start_index,
                                        augmented_end_index)

195
196
197
198
199
                augmented_data = x.val.get_data(augmented_slice,
                                                local_keys=True,
                                                copy=False)
                augmented_data = augmented_data.get_local_data(copy=False)

200
                augmented_distance_array = distance_array[augmented_slice]
201
202

        else:
203
204
            raise ValueError("Direct smoothing not implemented for given"
                             "distribution strategy.")
205
206
207
208
209

        if local_data_Q:
            # if the needed data resides on the nodes already, the necessary
            # are the same; no matter what the distribution strategy was.
            augmented_data = x.val.get_local_data(copy=False)
210
211
212
            augmented_distance_array = distance_array
            true_start = 0
            true_end = x.shape[affected_axis]
213
214

        # perform the convolution along the affected axes
215
216
217
218
219
220
221
222
223
        # currently only one axis is supported
        data_axis = affected_axes[0]
        local_result = self._direct_smoothing_single_axis(
                                                    augmented_data,
                                                    data_axis,
                                                    augmented_distance_array,
                                                    true_start,
                                                    true_end,
                                                    inverse)
224
225
226
227
228
        result = x.copy_empty()
        result.val.set_local_data(local_result, copy=False)
        return result

    def _direct_smoothing_single_axis(self, data, data_axis, distances,
229
                                      true_start, true_end, inverse):
230
        if inverse:
231
            true_sigma = 1. / self.sigma
232
233
234
        else:
            true_sigma = self.sigma

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        if data.dtype is np.dtype('float32'):
            distances = distances.astype(np.float32, copy=False)
            smoothed_data = su.apply_along_axis_f(
                                  data_axis, data,
                                  startindex=true_start,
                                  endindex=true_end,
                                  distances=distances,
                                  smooth_length=true_sigma,
                                  smoothing_width=self._direct_smoothing_width)
        elif data.dtype is np.dtype('float64'):
            distances = distances.astype(np.float64, copy=False)
            smoothed_data = su.apply_along_axis(
                                  data_axis, data,
                                  startindex=true_start,
                                  endindex=true_end,
                                  distances=distances,
                                  smooth_length=true_sigma,
                                  smoothing_width=self._direct_smoothing_width)

        elif np.issubdtype(data.dtype, np.complexfloating):
            real = self._direct_smoothing_single_axis(data.real,
                                                      data_axis,
                                                      distances,
                                                      true_start,
                                                      true_end, inverse)
            imag = self._direct_smoothing_single_axis(data.imag,
                                                      data_axis,
                                                      distances,
                                                      true_start,
                                                      true_end, inverse)

            return real + 1j*imag

268
        else:
269
270
            raise TypeError("Dtype %s not supported" % str(data.dtype))

271
        return smoothed_data